首页> 外文期刊>Hydrology and Earth System Sciences >An evapotranspiration model self-calibrated from remotely sensed surface soil moisture, land surface temperature and vegetation cover fraction: application to disaggregated SMOS and MODIS data
【24h】

An evapotranspiration model self-calibrated from remotely sensed surface soil moisture, land surface temperature and vegetation cover fraction: application to disaggregated SMOS and MODIS data

机译:自校准从远程感测的表面土壤水分,陆地温度和植被覆盖分数自校准的蒸发模型:应用于分类的SMOS和MODIS数据

获取原文
       

摘要

Thermal-based two-source energy balance modeling is essential to estimate the land evapotranspiration?(ET) in a wide range of spatial and temporal scales. However, the use of thermal-derived land surface temperature?(LST) is not sufficient to simultaneously constrain both soil and vegetation flux components. Therefore, assumptions (about either soil or vegetation fluxes) are commonly required. To avoid such assumptions, an energy balance model, TSEB-SM, was recently developed by Ait?Hssaine et?al. (2018b) in order to consider the microwave-derived near-surface soil moisture?(SM), in addition to the thermal-derived LST and vegetation cover fraction?(fc) normally used. While TSEB-SM has been successfully tested using in situ measurements, this paper represents its first evaluation in real life using 1 km resolution satellite data, comprised of MODIS (MODerate resolution Imaging Spectroradiometer) for LST and fc?data and 1 km resolution SM?data disaggregated from SMOS (Soil Moisture and Ocean Salinity) observations. The approach is applied during a 4-year period?(2014–2018) over a rainfed wheat field in the Tensift basin, central Morocco. The field used was seeded for the 2014–2015?(S1), 2016–2017?(S2) and 2017–2018?(S3) agricultural seasons, while it remained unploughed (as bare soil) during the 2015–2016?(B1) agricultural season. The classical TSEB model, which is driven only by LST and fc?data, significantly overestimates latent heat fluxes?(LE) and underestimates sensible heat fluxes?(H) for the four seasons. The overall mean bias values are?119, 94, 128?and 181 W m?2 for?LE and ?104, ?71, ?128?and ?181 W m?2 for?H, for?S1, S2, S3 and?B1, respectively. Meanwhile, when using TSEB-SM (SM and LST combined data), these errors are significantly reduced, resulting in mean bias values estimated as?39, 4, 7?and 62 W m?2 for?LE and??10, 24, 7, and ?59 W m?2 for?H, for?S1, S2, S3 and?B1, respectively. Consequently, this finding confirms again the robustness of the TSEB-SM in estimating latent/sensible heat fluxes at a large scale by using readily available satellite data. In addition, the TSEB-SM approach has the original feature to allow for calibration of its main parameters (soil resistance and Priestley–Taylor coefficient) from satellite data uniquely, without relying either on in situ measurements or on a priori parameter values.
机译:基于热基的双源能量平衡建模对于估计土地蒸散量是必不可少的?(et)在各种空间和时间尺度范围内。然而,使用热源源焊的陆地温度?(LST)不足以同时约束土壤和植被助焊剂组分。因此,通常需要假设(关于土壤或植被助焊剂)。为避免这种假设,最近由AIT开发了一个能量平衡模型TSEB-SM?Hssaine等。 (2018B)为了考虑微波衍生的近表面土壤水分?(SM),除了通常使用的热源LST和植被覆盖部分吗?(Fc)。当TSEB-SM已经使用原位测量成功测试时,本文代表了使用1公里分辨率的卫星数据在现实生活中的第一次评估,该数据包括用于LST和FC的MODIS(适度分辨率成像光谱仪)?数据和1公里分辨率SM?与SMOS(土壤水分和海洋盐度)观察分解的数据。该方法是在4年期间应用的?(2014-2018)在摩洛哥中部藏盆地的雨谷场。用于2014-2015的领域是播种的?(S1),2016-2017?(S2)和2017-2018?(S3)农业季节,而在2015-2016期间,它仍然不断(作为裸露的土壤)?(B1 )农业季节。古典TSEB模型仅由LST和FC驱动?数据,显着高估潜热通量?(LE)并低估了四季的明智热量?(h)。总体平均值偏差值是?119,94,128?和181 W m?2用于Δe和?104,?71,α128?和?181w m 2,对于Δh,for?s1,s2,s3和?B1分别。同时,在使用TSEB-SM(SM和LST组合数据)时,这些误差显着降低,导致估计为Δ39,4,7的平均偏差值?和62 W m?2用于?le和?? 10,24 ,7,以及ΔH,用于分别为ΔH,用于ΔH,S2,S3和ΔB1。因此,该发现再次通过使用易于获得的卫星数据来估计潜伏/明智的热通量的TSEB-SM的鲁棒性。此外,TSEB-SM方法具有原始功能,可以允许从卫星数据唯一地校准其主要参数(土壤阻力和普里斯特利 - 泰勒系数),而不依赖于原位测量或先验参数值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号