首页> 外文期刊>Hydrology and Earth System Sciences >Modeling the snow surface temperature with a one-layer energy balance snowmelt model
【24h】

Modeling the snow surface temperature with a one-layer energy balance snowmelt model

机译:用一层能量平衡雪花模型建模雪表面温度

获取原文
获取外文期刊封面目录资料

摘要

Snow surface temperature is a key control on and result of dynamically coupled energy exchanges at the snow surface. The snow surface temperature is the result of the balance between external forcing (incoming radiation) and energy exchanges above the surface that depend on surface temperature (outgoing longwave radiation and turbulent fluxes) and the transport of energy into the snow by conduction and meltwater influx. Because of the strong insulating properties of snow, thermal gradients in snow packs are large and nonlinear, a fact that has led many to advocate multiple layer snowmelt models over single layer models. In an effort to keep snowmelt modeling simple and parsimonious, the Utah Energy Balance (UEB) snowmelt model used only one layer but allowed the snow surface temperature to be different from the snow average temperature by using an equilibrium gradient parameterization based on the surface energy balance. Although this procedure was considered an improvement over the ordinary single layer snowmelt models, it still resulted in discrepancies between modeled and measured snowpack energy contents. In this paper we evaluate the equilibrium gradient approach, the force-restore approach, and a modified force-restore approach when they are integrated as part of a complete energy and mass balance snowmelt model. The force-restore and modified force-restore approaches have not been incorporated into the UEB in early versions, even though Luce and Tartoton have done work in calculating the energy components using these approaches. In addition, we evaluate a scheme for representing the penetration of a refreezing front in cold periods following melt. We introduce a method to adjust effective conductivity to account for the presence of ground near to a shallow snow surface. These parameterizations were tested against data from the Central Sierra Snow Laboratory, CA, Utah State University experimental farm, UT, and subnivean snow laboratory at Niwot Ridge, CO. These tests compare modeled and measured snow surface temperature, snow energy content, snow water equivalent, and snowmelt outflow. We found that with these refinements the model is able to better represent the snowpack energy balance and internal energy content while still retaining a parsimonious one layer format.
机译:雪表面温度是在雪地表面动态耦合能量交换的关键控制和结果。雪表面温度是外部迫使(进入辐射)和表面上方的能量交换之间的平衡的结果,这取决于表面温度(传出的长波辐射和湍流通量),通过传导和熔融水流将能量运输到雪中。由于雪的强烈绝缘性,雪包中的热梯度大而且是非线性的,这一事实使得许多人在单层模型上倡导多层雪花型号。努力保持雪花建模简单和宽松,犹他州能量平衡(UEB)雪花模型仅使用一层,但允许通过使用基于表面能量平衡的平衡梯度参数化与雪平均温度不同的雪表面温度。虽然这种程序被认为是对普通单层雪花模型的改进,但它仍然导致建模和测量的积雪能量内容之间的差异。在本文中,我们评估了均衡梯度方法,力恢复方法和改进的力恢复方法作为完全能量和质量平衡雪花模型的一部分。即使Luce和Tartoton在使用这些方法计算能量分量方面,仍未在早期版本中尚未纳入UEB中的力恢复和修改的力恢复方法。此外,我们评估了一种方案,用于表示熔体后冷时期的泄漏前的渗透。我们介绍一种调整有效电导率的方法,以解释在浅滩表面附近的地面存在。这些参数化针对来自CO的中央山脉雪地实验室,CA,犹他州州立大学实验场,UT和Subnievean Snow实验室的数据测试了这些参数。这些测试比较了模型和测量的雪表面温度,雪能量含量,雪水等效和雪花流出。我们发现,通过这些改进,该模型能够更好地代表积雪能量平衡和内部能量内容,同时仍然保留了一个定义的一层格式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号