首页> 外文期刊>PLoS Computational Biology >Dimensional reduction of emergent spatiotemporal cortical dynamics via a maximum entropy moment closure
【24h】

Dimensional reduction of emergent spatiotemporal cortical dynamics via a maximum entropy moment closure

机译:通过最大熵力闭合通过最高熵矩形动力学的尺寸减少

获取原文
           

摘要

Emergent nonlinear dynamics in the primary visual cortex (V1) may influence information processing in the early visual pathway and has been shown to affect visual perception. A major goal of systems neuroscience is to understand how complex brain functions can arise from the collective nonlinear dynamics of the underlying neuronal network. This challenge has been partly met through electrophysiological recordings, optical imaging and neural population models. However, a full account of how the multi-scale population dynamics emerges from the detailed biophysical properties of individual neurons and the network architecture remains elusive. Previously, working on a homogeneously-coupled network, we derived a series of population dynamics models, ranging from Master equations, to Fokker-Planck equations, and culminating in an augmented system of spatially-coupled ODEs. Here we present an application of this reduction method to a heterogeneously coupled neuronal network that models a spatially-extended portion of V1. We found that the temporal dynamics of individual V1 patches can be well captured by a low-dimensional set of voltage moments. At the same time, the spatially-coupled system can recapitulate the cortical wave generation and propagation induced by many visual stimuli, including those that induce motion illusions. Furthermore, this coarse-graining reveals the importance of the temporal differences between on-/off-pathways, that may account for the directional motion perception from darks to brights.
机译:初级视觉皮层(V1)中的紧急非线性动力学可能影响早期视觉途径中的信息处理,并且已被证明会影响视觉感知。系统神经科学的主要目标是了解如何从底层神经网络的集体非线性动态出现复杂的大脑功能。通过电生理记录,光学成像和神经人口模型部分地满足了这一挑战。然而,充分说明了多尺度人口动力学如何从个体神经元的详细生物物理特性出现,网络架构仍然难以捉摸。以前,在同质耦合网络上工作,我们派生了一系列人口动力学模型,从船长方程到Fokker-Planck方程,并在空间耦合杂散的增强系统中达到。在这里,我们将该减少方法应用于模拟V1的空间延伸部分的异构耦合的神经元网络的应用。我们发现,各个V1贴片的时间动态可以通过低维集电量拍摄很好地捕获。同时,空间耦合的系统可以重新承载由许多视觉刺激引起的皮质波产生和传播,包括引起运动幻觉的那些。此外,这种粗晶揭示了在/离线之间的时间差异的重要性,这可能会解释从黑暗向亮度的定向运动感知。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号