首页> 外文期刊>PLoS Biology >NASA’s first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research
【24h】

NASA’s first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research

机译:NASA的第一个基于地面的银河宇宙射线模拟器:在空间辐射生物学研究中启用新时代

获取原文
           

摘要

With exciting new NASA plans for a sustainable return to the moon, astronauts will once again leave Earth’s protective magnetosphere only to endure higher levels of radiation from galactic cosmic radiation (GCR) and the possibility of a large solar particle event (SPE). Gateway, lunar landers, and surface habitats will be designed to protect crew against SPEs with vehicle optimization, storm shelter concepts, and/or active dosimetry; however, the ever penetrating GCR will continue to pose the most significant health risks especially as lunar missions increase in duration and as NASA sets its aspirations on Mars. The primary risks of concern include carcinogenesis, central nervous system (CNS) effects resulting in potential in-mission cognitive or behavioral impairment and/or late neurological disorders, degenerative tissue effects including circulatory and heart disease, as well as potential immune system decrements impacting multiple aspects of crew health. Characterization and mitigation of these risks requires a significant reduction in the large biological uncertainties of chronic (low-dose rate) heavy-ion exposures and the validation of countermeasures in a relevant space environment. Historically, most research on understanding space radiation-induced health risks has been performed using acute exposures of monoenergetic single-ion beams. However, the space radiation environment consists of a wide variety of ion species over a broad energy range. Using the fast beam switching and controls systems technology recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory, a new era in radiobiological research is possible. NASA has developed the “GCR Simulator” to generate a spectrum of ion beams that approximates the primary and secondary GCR field experienced at human organ locations within a deep-space vehicle. The majority of the dose is delivered from protons (approximately 65%–75%) and helium ions (approximately 10%–20%) with heavier ions (Z ≥ 3) contributing the remainder. The GCR simulator exposes state-of-the art cellular and animal model systems to 33 sequential beams including 4 proton energies plus degrader, 4 helium energies plus degrader, and the 5 heavy ions of C, O, Si, Ti, and Fe. A polyethylene degrader system is used with the 100 MeV/n H and He beams to provide a nearly continuous distribution of low-energy particles. A 500 mGy exposure, delivering doses from each of the 33 beams, requires approximately 75 minutes. To more closely simulate the low-dose rates found in space, sequential field exposures can be divided into daily fractions over 2 to 6 weeks, with individual beam fractions as low as 0.1 to 0.2 mGy. In the large beam configuration (60 × 60 cm ~(2)), 54 special housing cages can accommodate 2 to 3 mice each for an approximately 75 min duration or 15 individually housed rats. On June 15, 2018, the NSRL made a significant achievement by completing the first operational run using the new GCR simulator. This paper discusses NASA’s innovative technology solution for a ground-based GCR simulator at the NSRL to accelerate our understanding and mitigation of health risks faced by astronauts. Ultimately, the GCR simulator will require validation across multiple radiogenic risks, endpoints, doses, and dose rates. This study describes how NASA’s new earth-based galactic cosmic ray simulator is being used to accelerate our understanding of the effects of space radiation exposure on astronauts and to validate countermeasures for exploration missions. For the first time, research teams can study mixed field ion and dose rate effects in a simulated space environment.
机译:随着新航空航天局的可持续返回的新航空航天局计划,宇航员将再次留下地球的保护磁层,仅耐受从银河宇宙辐射(GCR)的更高水平的辐射以及大型太阳能粒子事件(SPE)的可能性。 Gateway,Lunar Landers和Surface Habitats将旨在保护人员免受车辆优化,风暴避难所概念和/或活跃剂量测定的影响。然而,普遍存在的GCR将继续构成最重要的健康风险,特别是由于农历任务在持续时间内增加,并且美国宇航局在火星上设定了愿望。令人担忧的主要风险包括致癌物,中枢神经系统(CNS)效应导致潜在的任务认知或行为损伤和/或晚期神经系统疾病,包括循环和心脏病的退行性组织作用,以及潜在的免疫系统递减致电船员健康的方面。这些风险的特征和减轻这些风险需要显着降低慢性(低剂量率)重离子暴露的大型生物不确定性以及相关空间环境中的对策验证。从历史上看,使用单体单离子束的急性暴露进行了对理解空间辐射诱导的健康风险的大多数研究。然而,空间辐射环境由广泛的能量范围内的各种离子物种组成。使用快速光束切换和控制系统技术最近在布鲁克海汶国家实验室的美国宇航局空间辐射实验室(NSRL)中开发,可以在辐射生物学研究中进行新的时代。 NASA开发了“GCR模拟器”,以产生近似于深空车内的人体器官位置处所经历的主要和次级GCR场的远离离子束的光谱。大部分剂量由质子(约65%-75%)和氦离子(约10%-20%)递送,含有较重的离子(Z≥3),有助于其余部分。 GCR模拟器将最新的蜂窝和动物模型系统暴露于33个顺序梁,包括4个质子能量加降解器,4氦能加降解剂,以及C,O,Si,Ti和Fe的5重离子。聚乙烯降解剂系统与100meV / N H和HE梁一起使用,以提供几乎连续的低能量颗粒分布。 500 MGY曝光,从33个光束中的每一个提供剂量,需要大约75分钟。更紧密地模拟空间中发现的低剂量率,顺序场暴露可分为2至6周的每日馏分,各个光束馏分低至0.1至0.2 mg。在大型光束配置(60×60厘米〜(2))中,54个特殊的壳体笼可以容纳2至3只小鼠,每个持续时间约为75分钟或15个单独容纳的大鼠。 2018年6月15日,NSRL通过完成新GCR模拟器的首次运行来实现了重大成就。本文讨论了NASA在NSRL的基于地面GCR模拟器的创新技术解决方案,以加速我们的理解和减轻宇航员面临的健康风险。最终,GCR模拟器将需要跨多种辐射性风险,终点,剂量和剂量率验证。本研究描述了NASA新的基于地球的银河宇宙射线模拟器,用于加速我们对宇航员对空间辐射暴露的影响,并验证勘探任务的对策。研究团队首次可以在模拟空间环境中研究混合现场离子和剂量率效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号