...
首页> 外文期刊>PLoS Biology >Spastin depletion increases tubulin polyglutamylation and impairs kinesin-mediated neuronal transport, leading to working and associative memory deficits
【24h】

Spastin depletion increases tubulin polyglutamylation and impairs kinesin-mediated neuronal transport, leading to working and associative memory deficits

机译:Spastin Depletion增加小管蛋白聚酰胺和损害kinesin介导的神经元传输,导致工作和联想记忆缺陷

获取原文

摘要

Mutations in the gene encoding the microtubule-severing protein spastin (spastic paraplegia 4 [SPG4]) cause hereditary spastic paraplegia (HSP), associated with neurodegeneration, spasticity, and motor impairment. Complicated forms (complicated HSP [cHSP]) further include cognitive deficits and dementia; however, the etiology and dysfunctional mechanisms of cHSP have remained unknown. Here, we report specific working and associative memory deficits upon spastin depletion in mice. Loss of spastin-mediated severing leads to reduced synapse numbers, accompanied by lower miniature excitatory postsynaptic current (mEPSC) frequencies. At the subcellular level, mutant neurons are characterized by longer microtubules with increased tubulin polyglutamylation levels. Notably, these conditions reduce kinesin-microtubule binding, impair the processivity of kinesin family protein (KIF) 5, and reduce the delivery of presynaptic vesicles and postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Rescue experiments confirm the specificity of these results by showing that wild-type spastin, but not the severing-deficient and disease-associated K388R mutant, normalizes the effects at the synaptic, microtubule, and transport levels. In addition, short hairpin RNA (shRNA)-mediated reduction of tubulin polyglutamylation on spastin knockout background normalizes KIF5 transport deficits and attenuates the loss of excitatory synapses. Our data provide a mechanism that connects spastin dysfunction with the regulation of kinesin-mediated cargo transport, synapse integrity, and cognition. This study identifies deficits in working and associative memory in spastin knockout mice, resembling the cognitive deficits described in humans with severe forms of SPG4-type hereditary spastic paraplegia. Mechanistically, the findings suggest that impaired microtubule growth, kinesin motility and cargo delivery of synaptic AMPA receptors may contribute to the etiology of the disease.
机译:编码微管切割蛋白吐痰的基因中的突变(痉挛性截瘫4 [SPG4])导致遗传性痉挛性截瘫(HSP),与神经变性,痉挛和电机损伤相关。复杂的形式(复杂的HSP [CHSP])进一步包括认知缺陷和痴呆;然而,CHSP的病因和功能失调机制仍然是未知的。在这里,我们在小鼠中报告了特定的工作和联想记忆缺陷在小鼠中耗尽。抗痉挛介导的切断导致突触数减少,伴随着较低的微型兴奋性突触突触电流(MEPSC)频率。在亚细胞水平下,突变神经元的特征在于具有较长的微管,具有增加的微管蛋白聚谷酰胺水平。值得注意的是,这些条件降低了Kinesin-Microotubule结合,损害了Kinesin家族蛋白(KIF)5的处理率,并减少了突触前囊泡的输送和突触后α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体。救援实验通过表明野生型吐痰,但不是断裂缺陷和疾病相关的K388R突变体来证实这些结果的特异性,使突触,微管和运输水平的作用正常化。此外,短发夹RNA(ShRNA)介导的微管蛋白聚谷氨酰胺蛋白对鞣菌素敲除背景的降低标准化KIF5运输缺陷并衰减兴奋性突触的损失。我们的数据提供了一种机制,将Spastin功能障碍与Kinesin介导的货物运输,突触完整性和认知进行了调节。本研究识别吐痰敲除小鼠中的工作和联合记忆的缺陷,类似于具有严重形式的SPG4型遗传痉挛截瘫的人类中描述的认知缺陷。机械地,调查结果表明,微管生长受损,突触AMPA受体的胰腺炎运动性和货物递送可能导致疾病的病因。

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号