首页> 外文期刊>Plant Biotechnology Journal >Biotechnological mechanism for improving plant remobilization of phosphorus during leaf senescence
【24h】

Biotechnological mechanism for improving plant remobilization of phosphorus during leaf senescence

机译:改善叶片衰老过程中磷的生物技术机制

获取原文
           

摘要

Phosphorus enrichment of aquatic ecosystems through diffuse source pollution is an ongoing issue worldwide. A potential solution lies in the use of fast‐growing, multipurpose feedstocks, such as trees, to limit the flow of phosphorus into riparian areas through luxury consumption. However, the perennial nature of trees and their use of leaves as storage organs for excess phosphorus may reduce the effectiveness of contaminant removal during periods of leaf abscission. In an attempt to improve phosphorus remobilization during autumnal senescence, transgenic hybrid poplar P39 (Populus alba?×?Populus grandidentata) and Arabidopsis thaliana harbouring a constitutively expressed low‐affinity potato phosphate transporter (35S::StPht1‐1) were generated using Agrobacterium‐mediated transformation. For both species, the highest expressing 35S::StPht1‐1 lines were grown alongside wild‐type plants and subjected to increasing phosphate applications. StPht1‐1 expression in A.?thaliana led to a reduction in biomass when grown under high‐phosphate conditions and had no effect on phosphate remobilization during senescence. In contrast, StPht1‐1 constitutive expression in P39 resulted in increased leaf phosphate content in the highest expressing transgenic line and minimal to no effect on P resorption efficiency. Surprisingly, sulphate resorption showed the greatest improvement in all three transgenic poplar lines, displaying a 31%–37% increase in resorption efficiency. These results highlight the complexity of nutrient resorption mechanisms in plants.
机译:通过漫射源污染的水生生态系统的磷富集是全世界持续的问题。潜在的解决方案在于使用快速生长的多用途原料,例如树木,以通过奢侈品消耗将磷流入河岸地区。然而,树木的常年性质及其叶片作为过量磷的储存器官可能会降低叶片脱落期间污染物去除的有效性。为了改善秋季衰老期间的磷重新化,转基因杂交杨p39(杨树α×β·鲍姆Grandidata)和乌鸦症患有组成表达的低亲和力马铃薯磷酸盐转运蛋白(35s :: stpht1-1)的拟南芥是由农杆菌产生的介导的转化。对于这两个物种,最高表达35s :: stpht1-1系伴随着野生型植物并进行了增加的磷酸盐应用。在A.?Thaliana中的STPHT1-1表达导致在高磷酸盐条件下生长时的生物质减少,并且对衰老期间对磷酸盐进行了影响。相反,P39中的STPHT1-1本构表达导致最高表达转基因系中的磷酸盐含量增加,并且对P吸收效率的影响最小。令人惊讶的是,硫酸盐的吸收显示了所有三种转基因杨树线的最大改善,呈现出31%-37%的吸收效率。这些结果突出了植物营养吸收机制的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号