...
首页> 外文期刊>Physical Review X >Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures
【24h】

Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures

机译:原子薄石墨烯 - 过渡金属二甲硅藻van der Wa缺乏的电荷与能量转移

获取原文

摘要

Made from stacks of two-dimensional materials, van der Waals heterostructures exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal-semiconductor [i.e., graphene-transition metal dichalcogenide (TMD, here molybdenum diselenide, MoSe 2 )] heterostructures using a combination of microphotoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene / MoSe 2 is quenched by more than 2 orders of magnitude and rises linearly with the incident photon flux, demonstrating a drastically shortened (about 1?ps) room-temperature MoSe 2 exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe 2 Raman modes, which reveals net photoinduced electron transfer from MoSe 2 to graphene and hole accumulation in MoSe 2 . Remarkably, the steady-state Fermi energy of graphene saturates at 290 ± 15 meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets) and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of incident photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene / MoSe 2 . This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron exchange or dipole-dipole interaction) is the dominant interlayer coupling mechanism between atomically thin TMDs and graphene.
机译:van der Waals异质结构由堆叠二维材料制成,具有独特的浅灰质相互作用,并且对新颖的光电器件有前途。这种装置的性能由近场耦合来控制,例如,层间充电和/或能量转移。需要进行新的概念和实验方法来正确描述二维异种蔗种。在这里,我们报告了原子薄金属半导体中的层间电荷和能量转移的原始研究[即石墨烯转化金属二甲基化物(TMD,在此钼五烯烃,MOSE 2)]异质结构使用微磷光荧光和拉曼散射光谱的组合。石墨烯/气体2中的光致发光强度由2个大小的数量级淬灭,并与入射光通通量线性上升,展示急剧缩短(约1×PS)室温系统2个激子寿命。根据石墨烯和MOSE 2拉曼模式的综合分析提供了关键互补见解,其揭示了从MOSE 2到石墨烯和气孔积聚的净光导电子传递。值得注意的是,石墨烯的稳态FERMI能量在DIRAC点上方的290±15meV下饱和。在环境空气和真空中观察到这种可重复的行为,并且在内在因素(即频段偏移)和环境效应方面讨论。在这种饱和状态下,均衡的光突出的电子和孔的流动可以转移到石墨烯,这是有效地导致能量转移的机构。使用广泛的事件光子助熔剂和不同的环境条件,我们发现净光抑制电荷转移的存在对石墨烯/气体2中的近乎单位光致发光淬火效率没有可测量的影响。这种不存在相关性强烈建议能量转移到石墨烯(以电子交换或偶极偶极相互作用的形式)是原子上薄TMDS和石墨烯之间的主要层间耦合机构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号