...
首页> 外文期刊>Sensing and Bio-Sensing Research >Real-time optical sensing of exhaled acetone concentration utilizing non-Fickian Nafion diffusion inside a flow-through sample chamber
【24h】

Real-time optical sensing of exhaled acetone concentration utilizing non-Fickian Nafion diffusion inside a flow-through sample chamber

机译:利用流通样品室内的非Fickian Nafion扩散的呼出丙酮浓度的实时光学感测

获取原文

摘要

Rapid in-situ chemical analysis of flowing gas streams is of interest in a wide range of applications but requires deconvolution of the time-scales associated with the analyte source concentration, its accumulation within a sampling chamber, and its detection by a sensor. A mathematical analysis is presented on the use of a flow-through sample chamber for rapid, in-situ breath analysis utilizing analyte diffusion through a Nafion membrane optode. We show that this approach yields apparently non-Fickian (anomalous or Case II) transport that varies from tsup1/2/sup to t as t?→?0 with constant inlet concentration. Such behavior arises due to the transition from membrane-limited to sample chamber-limited transport dynamics depending on test conditions. The model is validated utilizing experimental data obtained from the color response associated with the Friedel-Craft acylation of acetone vapor with resorcinol reagent immobilized in Nafion membrane solid-state catalyst. Reduction of optode membrane thickness and increase in membrane humidification yield an optical response limited only by sample chamber material accumulation. At this limit, the exhaled breath signal for acetone obtained from a healthy individual is found to vary as tsup2/sup (apparently Super Case II transport). Utilizing a simplified material balance on the human lung, this observation is ascribed to a constant acetone exhalation rate as opposed to a constant exhaled acetone concentration. This conclusion is shown to have broad implications on the use of exhaled breath biomarkers for medical diagnosis, in particular, lung physiology and permeability.
机译:流动气体流的快速原位化学分析对于广泛的应用感兴趣,但需要与分析物源浓度相关的时间尺度的去卷积,其在采样室内的积聚,并通过传感器检测。利用通过Nafion膜光磁极的分析物扩散的利用分析物扩散,提出了使用流通样品室的数学分析。我们表明这种方法显然是非Fickian(异常或壳体II)的运输,其随恒定入口浓度的恒定入口浓度而从T 1/2 变化。由于从膜限制到样品限制的运输动力学,因此根据试验条件,这种行为产生。利用从与丙酮蒸气的Friedel-Craft酰化相关的颜色响应获得的实验数据进行验证,使具有在Nafion膜固态催化剂中固定的间苯二酚试剂。降低光电膜厚度和膜加湿的增加仅通过采样室材料积聚产生光学响应。在该极限下,发现从健康个体获得的丙酮的呼出呼气信号变化为T 2 (显然超级案例II运输)。利用在人肺部上的简化材料平衡,该观察结果归因于恒定的丙酮呼出速率,而不是恒定呼出的丙酮浓度。这一结论显示对使用呼出的呼吸生物标志物进行医学诊断,特别是肺生理学和渗透性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号