...
首页> 外文期刊>Stem Cell Research & Therapy >Correlation between frataxin expression and contractility revealed by in vitro Friedreich’s ataxia cardiac tissue models engineered from human pluripotent stem cells
【24h】

Correlation between frataxin expression and contractility revealed by in vitro Friedreich’s ataxia cardiac tissue models engineered from human pluripotent stem cells

机译:弗里德莱希的果实表达与收缩性的相关性来自人类多能干细胞的体外弗菲尔德共济失调组织模型

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Friedreich's ataxia (FRDA) is an autosomal recessive disease caused by a non-coding mutation in the first intron of the frataxin (FXN) gene that suppresses its expression. Compensatory hypertrophic cardiomyopathy, dilated cardiomyopathy, and conduction system abnormalities in FRDA?lead to cardiomyocyte (CM) death and fibrosis, consequently resulting in heart failure and arrhythmias. Murine models have been developed to study disease pathology in the past two decades; however, differences between human and mouse physiology and metabolism have limited the relevance of animal studies in cardiac disease conditions. To bridge this gap, we aimed to generate species-specific, functional in vitro experimental models of FRDA using 2-dimensional (2D) and 3-dimensional (3D) engineered cardiac tissues from FXN-deficient human pluripotent stem cell-derived ventricular cardiomyocytes (hPSC-hvCMs) and to compare their contractile and electrophysiological properties with healthy tissue constructs. Healthy control and FRDA patient-specific hPSC-hvCMs were derived by directed differentiation using a small molecule-based protocol reported previously. We engineered the?hvCMs into our established human ventricular cardiac tissue strip (hvCTS) and human ventricular cardiac anisotropic sheet (hvCAS) models, and?functional assays were performed on days 7-17 post-tissue fabrication to assess the electrophysiology and contractility of FRDA patient-derived and FXN-knockdown engineered tissues, in comparison with healthy controls. To?further validate the disease model, forced expression of FXN was induced in FXN-deficient tissues to test if disease phenotypes could be rescued. Here, we report for the first time the generation of human engineered tissue models of FRDA cardiomyopathy from hPSCs: FXN-deficient hvCTS displayed attenuated developed forces (by 70-80%) compared to healthy controls. High-resolution optical mapping of hvCAS with reduced FXN expression also revealed electrophysiological defects consistent with clinical observations, including action potential duration prolongation and maximum capture frequency reduction. Interestingly, a clear positive correlation between FXN expression and contractility was observed (ρ??0.9), and restoration of FXN protein levels by lentiviral transduction rescued contractility defects in FXN-deficient hvCTS. We conclude that human-based in vitro cardiac tissue models of FRDA provide a translational, disease-relevant biomimetic platform for the evaluation of novel therapeutics and to provide insight into FRDA disease progression.
机译:Friedreich的Ataxia(FRDA)是由抑制其表达的Frataxin(FXN)基因的第一个内含子中的非编码突变引起的常染色体隐性疾病。补偿性肥厚性心肌病,扩张心肌病和FRDA的传导系统异常?导致心肌细胞(CM)死亡和纤维化,从而导致心力衰竭和心律失常。在过去的二十年中,已经开发了鼠模型以研究疾病病理;然而,人和小鼠生理和代谢之间的差异限制了动物研究在心脏病条件下的相关性。为了弥合这种差距,我们旨在使用来自FXN缺陷的人多能干细胞源性心肌细胞的FXN缺陷的人类多能干细胞(3D)生成FRDA的特异性功能性的体外实验模型和三维(3D)的工程心脏组织( HPSC-HVCMS)并与健康组织结构进行比较它们的收缩和电生理学性质。通过先前报告的基于小分子的方案,通过定向分化来源的健康控制和FRDA患者特异性HPSC-HVCM。我们将ΔHVCMS设计为我们已建立的人心室心脏组织条(HVCTS)和人心室心脏各向异性片(HVCAS)模型,并且在组织7-17天后的制造时进行功能测定,以评估FRDA的电生理学和收缩性与健康对照相比,患者衍生和FXN敲低的工程组织。至?进一步验证疾病模型,在FXN缺陷组织中诱导FXN的强迫表达,以测试疾病表型是否可以救出。在这里,我们首次报告来自HPSCS的FRDA心肌病的人工工程组织模型:与健康对照相比,缺乏缺陷的HVCTS显示衰减发达的力(70-80%)。具有减少的FXN表达的HVCA的高分辨率光学映射还揭示了与临床观察一致的电生理缺陷,包括动作电位持续时间延长和最大捕获频率降低。有趣的是,观察到FXN表达和收缩性之间的明显正相关(ρ?> 0.9),并通过慢病毒转导恢复FXN缺陷HVCT中的收缩性缺陷的FXN蛋白水平。我们得出结论,FRDA的基于人的体外心脏组织模型为评估新的治疗剂提供了一种平移,疾病相关的仿生平台,并提供对FRDA疾病进展的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号