首页> 外文期刊>ScienceOpen Research >Fast Solution of the Nonlinear Poisson-Boltzmann Equation Using the Reduced Basis Method and Range-Separated Tensor Format
【24h】

Fast Solution of the Nonlinear Poisson-Boltzmann Equation Using the Reduced Basis Method and Range-Separated Tensor Format

机译:使用减少的基础方法和分离的张量格式快速解决非线性泊松 - Boltzmann方程的解决方案

获取原文
       

摘要

The Poisson-Boltzmann equation (PBE) is a nonlinear elliptic parametrized partial differential equation that is ubiquitous in biomolecular modeling. It determines a dimensionless electrostatic potential around a biomolecule immersed in an ionic solution cite{Chen}. For a monovalent electrolyte (i.e. a symmetric 1:1 ionic solution) it is given by$$label{PBE} -ec{abla}.(epsilon(x)ec{abla}u(x)) + ar{kappa}^2(x) sinh(u(x)) = rac{4pi e^2}{k_B T}sum_{i=1}^{N_m}z_idelta(x-x_i) quad extrm{in} quad Omega in mathbb{R}^3, $$$$label{eq:Dirichlet} u(x) = g(x) quad extrm{on} quad partial{Omega}, $$where$epsilon(x)$and$ar{k}^2(x)$are discontinuous functions at the interface between the charged biomolecule and the solvent, respectively.$delta(x-x_i)$is the Dirac delta distribution at point$x_i$. In this study, we treat the PBE as an interface problem by employing the recently developed range-separated tensor format as a solution decomposition technique cite{BKK_RS:16}. This is aimed at separating efficiently the singular part of the solution, which is associated with$delta(x-x_i)$, from the regular (or smooth) part. It avoids building numerical approximations to the highly singular part because its analytical solution, in the form of$u_{extrm{s}}(x) = lpha sum_{i=1}^{Nm}z_i/ lvert x-x_i vert$exists, hence increasing the overall accuracy of the PBE solution.On the other hand, numerical computation of eqref{PBE} yields a high-fidelity full order model (FOM) with dimension of$mathcal{O}(10^5)$$sim$$mathcal{O}(10^6)$, which is computationally expensive to solve on modern computer architectures for parameters with varying values, for example, the ionic strength,$I in ar{k}^2(x)$. Reduced basis methods are able to circumvent this issue by constructing a highly accurate yet small-sized reduced order model (ROM) which inherits all of the parametric properties of the original FOM cite{morRozHP08}. This greatly reduces the computational complexity of the system, thereby enabling fast simulations in a many-query context. We show numerical results where the RBM reduces the model order by a factor of approximately $350,000$ and computational time by $7,000$ at an accuracy of$mathcal{O}(10^{-8})$. This shows the potential of the RBM to be incorporated in the available software packages, for example, the adaptive Poisson-Boltzmann software (APBS).
机译:Poisson-Boltzmann方程(PBE)是一种非线性椭圆坐标偏微分方程,其在生物分子建模中普遍存在。它决定了浸入离子溶液中的生物分子周围的无量纲静电电位 Cite {Chen}。对于一只单价电解质(即对称1:1离子溶液),它由$$ 标签{pbe} - vec { nabla}给出。( epsilon(x) vec { nabla} u(x)) + bar { kappa} ^ 2(x) sinh(u(x))= frac {4 pi e ^ 2} {k_b t} sum_ {i = 1} ^ {n_m} z_i delta( x-x_i) quad textrm {in} quad oomega in mathbb {r} ^ 3,$$$$ label {eq:dirichlet} u(x)= g(x) quad textrm { ON} Quad Partial { OMEGA},$$在哪里$ epsilon(x)$和$ bar {k} ^ 2(x)$分别是带电生物分子和溶剂之间的界面处的不连续功能。 $ delta(x-x_i)$是dire $ x_i $的DIRAC DELTA分发。在这项研究中,我们通过使用最近开发的范围分离的张量格式作为解决方案分解技术 Cite {BKK_RS:16}来将PBE作为接口问题。这旨在有效地分离解决方案的奇异部分,这与$ delta(x-x_i)$相关联,来自常规(或平滑)部分。它避免了以$ u _ { textrm {s}}(x)= alpha sum_ {i = 1} ^ {nm} z_i / lvert x的分析解决方案,以构建高度奇异部分的数值近似 - x_i rvert $存在,因此提高了PBE解决方案的整体精度。另一方面, eqref {pbe}的数值计算产生了一个高保真的全订单模型(FOM),具有$ mathcal的维度{ o}(10 ^ 5)$$ SIM $$$$$$$$$$$$,它(10 ^ 6)$,用于在现代计算机架构上解决具有不同值的参数的计算昂贵,例如,离子力量,$ i in bar {k} ^ 2(x)$。减少基础方法通过构建高准确但小型减少的顺序模型(ROM)来绕过这个问题,该模型继承原始FOM CITE {Morrozhp08}的所有参数属性。这极大地降低了系统的计算复杂性,从而在许多查询上下文中能够快速模拟。我们展示了数值结果,其中RBM将模型顺序减少约350,000美元,计算时间为7,000美元,以$ mathcal {o}(10 ^ {-8})$。这表明RBM的潜力结合在可用软件包中,例如,Adaptive Poisson-Boltzmann软件(APB)。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号