...
首页> 外文期刊>Science Advances >Longitudinal and transverse electron paramagnetic resonance in a scanning tunneling microscope
【24h】

Longitudinal and transverse electron paramagnetic resonance in a scanning tunneling microscope

机译:扫描隧道显微镜中的纵向和横向电子顺磁共振

获取原文

摘要

Electron paramagnetic resonance (EPR) spectroscopy is widely used to characterize paramagnetic complexes. Recently, EPR combined with scanning tunneling microscopy (STM) achieved single-spin sensitivity with sub-angstrom spatial resolution. The excitation mechanism of EPR in STM, however, is broadly debated, raising concerns about widespread application of this technique. We present an extensive experimental study and modeling of EPR-STM of Fe and hydrogenated Ti atoms on a MgO surface. Our results support a piezoelectric coupling mechanism, in which the EPR species oscillate adiabatically in the inhomogeneous magnetic field of the STM tip. An analysis based on Bloch equations combined with atomic-multiplet calculations identifies different EPR driving forces. Specifically, transverse magnetic field gradients drive the spin-1/2 hydrogenated Ti, whereas longitudinal magnetic field gradients drive the spin-2 Fe. Also, our results highlight the potential of piezoelectric coupling to induce electric dipole moments, thereby broadening the scope of EPR-STM to nonpolar species and nonlinear excitation schemes.
机译:电子顺磁共振(EPR)光谱被广泛用于表征顺磁性复合物。最近,EPR结合扫描隧道显微镜(STM),实现了具有子埃埃空间分辨率的单自由旋转性。然而,STM中EPR在STM中的激发机制是广泛的争论,提高了对这种技术的广泛应用的担忧。我们在MgO表面上提出了一种广泛的实验研究和对Fe和氢化Ti原子的EPR-STM的建模。我们的结果支持压电耦合机构,其中EPR物种在STM尖端的非均匀磁场中绝热地振荡。基于Bloch方程的分析与原子 - 多重计算相结合,识别不同的EPR驱动力。具体地,横向磁场梯度驱动旋转-1 / 2氢化Ti,而纵向磁场梯度驱动旋转2 Fe。此外,我们的结果突出了压电耦合以诱导电偶极矩的潜力,从而扩展了EPR-STM的范围与非极性物种和非线性激励方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号