首页> 外文期刊>Orthopaedic Journal of Sports Medicine >The Influence of Graft Tensioning Sequence on Tibiofemoral Orientation during Bicruciate and Posterolateral Corner Knee Ligament Reconstruction: A Biomechanical Study
【24h】

The Influence of Graft Tensioning Sequence on Tibiofemoral Orientation during Bicruciate and Posterolateral Corner Knee Ligament Reconstruction: A Biomechanical Study

机译:移植物张紧序列对双缘和后侧角膝关节韧带重建过程中胫料取向的影响:生物力学研究

获取原文
           

摘要

Objectives: During a multiple knee ligament reconstruction, the graft tensioning order may influence the final tibiofemoral orientation and corresponding knee kinematics. Therefore, the objective of this study was to biomechanically evaluate the effect of different graft tensioning sequences on knee tibiofemoral orientation following multiple knee ligament reconstruction in a bicruciate ligament (anterior cruciate ligament [ACL] and posterior cruciate ligament [PCL]) with posterolateral corner [PLC] injured knee. Methods: Ten non-paired, fresh-frozen human cadaveric knees were utilized for this study. Following reconstruction of both cruciate and posterolateral corner ligaments and proximal graft fixation, each knee was randomly assigned to each of four graft tensioning order groups: (1) PCL → ACL → PLC, (2) PCL → PLC → ACL, (3) PLC → ACL → PCL and (4) ACL → PCL → PLC. The tibiofemoral orientation after graft tensioning was measured and compared to the intact states. Results: Tensioning the ACL first (tensioning order 4) resulted in posterior displacement of the tibia at 0° by 1.7 ± 1.3 mm compared to the intact state (p=0.002) (Figure 1). All tensioning orders resulted in significantly increased anterior tibial translation compared to the intact state at higher flexion angles ranging from 2.7 mm to 3.2 mm at 60° and 3.1 mm to 3.4 mm at 90° for tensioning orders 1 and 2 respectively (all p<0.001). There was no significant difference in tibiofemoral orientation in the sagittal plane between the tensioning orders at higher flexion angles. All tensioning orders resulted in increased internal tibial rotation (all p<0.001). Tensioning and fixing the PLC first (tensioning order 3) resulted in the most increases in internal rotation of the tibia; 2.4° ± 1.9°, 2.7° ± 1.8° and 2.0° ± 2.0° at 0°, 30° and 60° respectively (Table 1). Conclusion: None of the tensioning orders restored intact knee tibiofemoral orientation. Tensioning the posterolateral corner first should be avoided in bicruciate knee ligament reconstruction with a concurrent posterolateral corner reconstruction because it significantly increased tibial internal rotation. We recommend that the PCL be tensioned first, followed by the ACL to avoid posterior translation of the tibia in extension where the knee is primarily loaded with most activities and finally the PLC. Figure 1: Mean changes from intact in tibial displacement in the anteroposterior (AP) direction after different tensioning sequences compared to the intact state (error bars represent ± 1 SD). The magnitude demonstrates changes after each tensioning sequence with intact subtracted. Positive values denote anterior translation, and negative values denote posterior translation of the tibia. * = significantly different from intact, native state ( p < .05).0 Table 1: Pairwise comparison of internal and external tibial rotation between the different tensioning orders with the intact, and between the tensioning orders at different angles (0°, 30°, 60°, 90°, respectively) for the zero force state. Angles are given in degrees, and the differences between the states are in degrees. Numbers in the top row denote tensioning order * denotes significant difference for that comparison. PP: passive path with minimal forces on the knee. Pairwise comparison of internal and external tibial rotation between the different tensioning orders 1 vs Intact 2 vs Intact 3 vs Intact 4 vs Intact 2 vs 1 3 vs 1 4 vs 1 3 vs 2 4 vs 2 4 vs 3 1.6* 1.8* 2.4* 1.7* 0.3 0.9 0.1 0.6 -0.1 -0.7 2.1* 2.3* 2.7* 2.3* 0.2 0.6 0.2 0.4 0 -0.4 1.7* 1.9* 2.0* 1.6* 0.2 0.3 -0.1 0.1 -0.3 -0.4 1.9 2.1* 2.0* 1.4 0.3 0.1 -0.4 -0.2 -0.7* -0.5.
机译:目的:在多膝韧带重建期间,移植物张紧顺序可能会影响最终的胫铁纤维取向和相应的膝关节运动学。因此,本研究的目的是生物力学评估不同接枝张紧序列在双膝盖韧带(前十字韧带[ACL]和后十字韧带[PCL]中的多膝韧带重建后膝关节胫甲酯取向对膝关节韧带取向的影响。 PLC]受伤的膝盖。方法:为这项研究使用了十个非配对,新鲜冷冻的新鲜冷冻的人尸体膝关节。在重建十字架和后侧角韧带和近端移植物固定之后,将每个膝关节随机分配给四个移植张紧阶组中的每一个:(1)PCL→ACL→PLC,(2)PCL→PLC→ACL,(3)PLC →ACL→PCL和(4)ACL→PCL→PLC。测量移植物张紧后的胫骨代理取向并与完整状态进行比较。结果:与完整状态相比,张紧胫骨(张紧阶4)导致胫骨的后位移1.7±1.3mm(p = 0.002)(图1)。所有张紧顺序导致与在60°的较高屈曲角度的完整状态相比,在60°和3.1mm至3.4mm的较高屈曲角度下,分别为3.1mm至3.4mm的完整状态,分别为张紧订单1和2(所有P <0.001 )。在较高屈曲角度之间的张紧顺序之间的矢状平面中的胫骨型取向没有显着差异。所有张紧订单都导致内部胫骨旋转增加(所有P <0.001)。张紧和固定PLC第一(张紧令3)导致胫骨内部旋转的增加升高; 2.4°±1.9°,2.7°±1.8°和2.0°±2.0°分别在0°,30°和60°(表1)。结论:张紧订单都没有恢复完整的膝关节胫铁纤维定位。首先应避免张紧后侧角,并在双旋转膝盖重建中避免,并经过同时的后侧角重建,因为它显着增加了胫骨内部旋转。我们建议PCL首先张紧,然后是ACL,以避免胫骨的延伸中的后旋过翻译,其中膝盖主要加载大多数活动,最后是PLC。图1:与完整状态相比不同的张紧序列(误差栏代表±1 SD)后,在不同张紧序列后,在不同张紧序列(误差杆代表±1 SD)之后的平均变化从胫骨前剂(AP)方向上的平均变化。大小在每个张紧序列与完整减去的每个张紧序列后表现出变化。正值表示前平翻译,负值表示胫骨后翻。 * =与完整的本机状态有显着不同(P <.05).0表1:在不同张紧顺序与完整的不同张紧顺序之间的内部和外部胫骨旋转的成对比较,以及不同角度的张紧顺序(0°,30 °,60°,90°,分别为零力状态。角度以度为单位,州之间的差异为程度。顶行中的数字表示张紧顺序*表示对比较的显着差异。 PP:膝盖上具有最小力的被动路径。成对比较不同张紧顺序的内部和外部胫骨旋转,不同张紧序列1 Vs完好的2 Vs完好3 Vs完好无损4 Vs Intact 2 Vs 1 3 Vs 1 4 Vs 1 3 Vs 2 4与2 4 Vs 3 1.6 * 1.8 * 2.4 * 1.7 * 0.3 0.9 0.1 0.6 -0.1 -0.7 2.1 * 2.3 * 2.7 * 2.3 * 0.2 0.6 0.2 0.4 0 -0.4 1.7 * 1.9 * 2.0 * 1.6 * 0.2 0.3 -0.1 0.1 -0.3 -0.4 1.9 2.1 * 2.0 * 1.4 0.3 0.1 - 0.4 -0.2 -0.7 * -0.5。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号