首页> 外文期刊>Open Access Library Journal >Percolation Transitions of the Ideal Gas and Supercritical Mesophase
【24h】

Percolation Transitions of the Ideal Gas and Supercritical Mesophase

机译:理想气体和超临界中间相的渗透转变

获取原文
       

摘要

High-temperature and pressure boundaries of the liquid and gaseous states have not been defined thermodynamically. Standard liquid-state physics texts use either critical isotherms or isobars as ad hoc boundaries in phase diagrams. Here we report that percolation transition loci can define liquid and gas states, extending from super-critical temperatures or pressures to “ideal gas” states. Using computational methodology described previously we present results for the thermodynamic states at which clusters of excluded volume ( V _( E ) ) and pockets of available volume ( V _( A ) ), for a spherical molecule diameter σ , percolate the whole volume ( V = V _( E ) V _( A ) ) of the ideal gas. The molecular-reduced temperature ( T )/pressure ( p ) ratios ( T * ) = k _( B ) T / pσ 3 ) ) for the percolation transitions are T * ) PE ) = 1.495 ± 0.01 and T * ) PA ) = 1.100 ± 0.01. Further MD computations of percolation loci for the Widom-Rowlinson (W-R) model of a partially miscible binary liquid (A-B) show the connection between the ideal gas percolation transitions and the 1 st ) -order phase-separation transition. A phase diagram for the penetrable cohesive sphere (PCS) model of a one-component liquid-gas is then obtained by analytic transcription of the W-R model thermodynamic properties. The PCS percolation loci extend from a critical coexistence of gas plus liquid to the low-density limit ideal gas. Extended percolation loci for argon, determined from literature equation-of-state measurements exhibit similar phenomena. When percolation loci define phase bounds, the liquid phase spans the whole density range, whereas the gas phase is confined by its percolation boundary within an area of low T and p on the density surface. This is contrary to a general perception, and reopens a debate of “what is liquid”. We append this contribution to the science of liquid-gas criticality and liquid-state bounds with further open debate.
机译:液体和气态的高温和压力边界尚未定义热力学上。标准液态物理文本在相图中使用关键等温线或ISOBARS作为临时边界。在这里,我们认为渗透过渡基因座可以定义液体和气体状态,从超临界温度或压力延伸到“理想气体”状态。使用先前描述的计算方法,我们为可排除的体积(v _(e))和可用体积的袋(v _(a))的簇提供的热力学状态存在的结果,对于球形分子直径σ,整个体积( v = v _(e)v _(a))理想气体。用于渗透转变的分子降低温度(T)/压力(P)= K _(B)T /Pσ3)是T *)PE)= 1.495±0.01和T *)PA) = 1.100±0.01。用于部分混溶二进制液体(A-B)的WIDOM-ROWLINSON(W-R)模型的渗滤基因座的进一步的MD计算显示了理想气体渗透转变和1 ST)的连接之间的连接。然后通过W-R模型热力学性质的分析转录获得一种单组分液体气体的可渗透粘性球体(PCS)模型的相图。 PCS渗透基因座从气体加液的临界共存延伸到低密度限制理想气体。用于氩气的扩展渗透基因座,从文献方程式测量确定具有类似的现象。当渗透基因座限定相相界时,液相跨越整个密度范围,而气相局限于其在密度表面上的低T和P区域内的渗透边界。这与一般性看法相反,并重新打开了“什么是液体”的争论。我们对液体气体临界和液态界限的科学施加了这一贡献,进一步开放辩论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号