首页> 外文期刊>Nonlinear processes in geophysics >Simulating model uncertainty of subgrid-scale processes by sampling model errors at convective scales
【24h】

Simulating model uncertainty of subgrid-scale processes by sampling model errors at convective scales

机译:通过在对流尺度上采样模型误差模拟子级过程的模型不确定性

获取原文
           

摘要

Ideally, perturbation schemes in ensemble forecasts should be based on the statistical properties of the model errors. Often, however, the statistical properties of these model errors are unknown. In practice, the perturbations are pragmatically modelled and tuned to maximize the skill of the ensemble forecast. In this paper a general methodology is developed to diagnose the model error, linked to a specific physical process, based on a comparison between a target and a reference model. Here, the reference model is a configuration of the ALADIN (Aire Limitée Adaptation Dynamique Développement International) model with a parameterization of deep convection. This configuration is also run with the deep-convection parameterization scheme switched off, degrading the forecast skill. The model error is then defined as the difference of the energy and mass fluxes between the reference model with scale-aware deep-convection parameterization and the target model without deep-convection parameterization. In the second part of the paper, the diagnosed model-error characteristics are used to stochastically perturb the fluxes of the target model by sampling the model errors from a training period in such a way that the distribution and the vertical and multivariate correlation within a grid column are preserved. By perturbing the fluxes it is guaranteed that the total mass, heat and momentum are conserved. The tests, performed over the period 11–20?April?2009, show that the ensemble system with the stochastic flux perturbations combined with the initial condition perturbations not only outperforms the target ensemble, where deep convection is not parameterized, but for many variables it even performs better than the reference ensemble (with scale-aware deep-convection scheme). The introduction of the stochastic flux perturbations reduces the small-scale erroneous spread while increasing the overall spread, leading to a more skillful ensemble. The impact is largest in the upper troposphere with substantial improvements compared to other state-of-the-art stochastic perturbation schemes. At lower levels the improvements are smaller or neutral, except for temperature where the forecast skill is degraded.
机译:理想情况下,集合预测中的扰动方案应基于模型错误的统计特性。然而,通常,这些模型误差的统计特性是未知的。在实践中,扰动是务实的建模和调整以最大化集合预测的技能。本文基于目标和参考模型之间的比较,开发了一般方法来诊断与特定物理过程相关联的模型误差。这里,参考模型是Aladin(AireLimitée适应动态DymentiqueLovencement International)模型的配置,具有深度对流的参数化。此配置也运行,深对流参数化方案已关闭,降低预测技术。然后将模型错误定义为参考模型之间的能量和质量通量与尺度感知深对流参数化和目标模型之间的能量和质量通量的差异,而无需深对流参数化。在本文的第二部分中,诊断的模型误差特性用于通过从训练期间采样模型误差来随机扰乱目标模型的磁通量,使得网格内的分布和垂直和多变量相关性列被保留。通过扰动通量,保证总质量,热量和动量是保守的。测试,在11-20期间进行的测试?2009年4月,表明,与随机通量扰动的集合系统结合了初始条件扰动,不仅优于目标集合,其中深对流未参数化,但对于许多变量而言甚至比参考集合更好(具有比例感知深对流方案)。随机助流扰动的引入减少了小规模的错误传播,同时增加了整体蔓延,导致更熟练的合并。与其他最先进的随机扰动方案相比,对流层中的抗冲击性最大。在较低级别下,除了预测技能降低的温度之外,改进更小或中性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号