...
首页> 外文期刊>MBio >Plasmodium berghei K13 Mutations Mediate In Vivo Artemisinin Resistance That Is Reversed by Proteasome Inhibition
【24h】

Plasmodium berghei K13 Mutations Mediate In Vivo Artemisinin Resistance That Is Reversed by Proteasome Inhibition

机译:<命名含量内容型=“属型”> Plasmodium Berghei K13突变在体内介相通过蛋白酶体抑制反转的青蒿素抗性

获取原文
           

摘要

Recent successes in malaria control have been seriously threatened by the emergence of Plasmodium falciparum parasite resistance to the frontline artemisinin drugs in Southeast Asia. P. falciparum artemisinin resistance is associated with mutations in the parasite K13 protein, which associates with a delay in the time required to clear the parasites upon drug treatment. Gene editing technologies have been used to validate the role of several candidate K13 mutations in mediating P. falciparum artemisinin resistance in vitro under laboratory conditions. Nonetheless, the causal role of these mutations under in vivo conditions has been a matter of debate. Here, we have used CRISPR/Cas9 gene editing to introduce K13 mutations associated with artemisinin resistance into the related rodent-infecting parasite, Plasmodium berghei . Phenotyping of these P. berghei K13 mutant parasites provides evidence of their role in mediating artemisinin resistance in vivo , which supports in vitro artemisinin resistance observations. However, we were unable to introduce some of the P. falciparum K13 mutations (C580Y and I543T) into the corresponding amino acid residues, while other introduced mutations (M476I and R539T equivalents) carried pronounced fitness costs. Our study provides evidence of a clear causal role of K13 mutations in modulating susceptibility to artemisinins in vitro and in vivo using the well-characterized P. berghei model. We also show that inhibition of the P. berghei proteasome offsets parasite resistance to artemisinins in these mutant lines. ABSTRACT The recent emergence of Plasmodium falciparum parasite resistance to the first line antimalarial drug artemisinin is of particular concern. Artemisinin resistance is primarily driven by mutations in the P. falciparum K13 protein, which enhance survival of early ring-stage parasites treated with the artemisinin active metabolite dihydroartemisinin in vitro and associate with delayed parasite clearance in vivo . However, association of K13 mutations with in vivo artemisinin resistance has been problematic due to the absence of a tractable model. Herein, we have employed CRISPR/Cas9 genome editing to engineer selected orthologous P. falciparum K13 mutations into the K13 gene of an artemisinin-sensitive Plasmodium berghei rodent model of malaria. Introduction of the orthologous P. falciparum K13 F446I, M476I, Y493H, and R539T mutations into P. berghei K13 yielded gene-edited parasites with reduced susceptibility to dihydroartemisinin in the standard 24-h in vitro assay and increased survival in an adapted in vitro ring-stage survival assay. Mutant P. berghei K13 parasites also displayed delayed clearance in vivo upon treatment with artesunate and achieved faster recrudescence upon treatment with artemisinin. Orthologous C580Y and I543T mutations could not be introduced into P. berghei , while the equivalents of the M476I and R539T mutations resulted in significant growth defects. Furthermore, a Plasmodium -selective proteasome inhibitor strongly synergized dihydroartemisinin action in these P. berghei K13 mutant lines, providing further evidence that the proteasome can be targeted to overcome artemisinin resistance. Taken together, our findings provide clear experimental evidence for the involvement of K13 polymorphisms in mediating susceptibility to artemisinins in vitro and, most importantly, under in vivo conditions.
机译:疟疾控制的最近成功受到疟原虫对东南亚前线青蒿素药物的疟原虫抗性的出现严重的威胁。 P. falciparum青蒿素抗性与寄生虫K13蛋白中的突变有关,该突变与在药物治疗后清除寄生虫所需的时间延迟。基因编辑技术已被用来验证几种候选K13突变在实验室条件下在体外介导的P.Malciparum artemisinin抗性的作用。尽管如此,在体内条件下,这些突变的因果作用是辩论问题。在这里,我们使用CRISPR / CAS9基因编辑来引入与青蒿素抗性相关的K13突变,进入相关啮齿动物感染寄生虫,疟原虫Perghei。这些P. Berghei K13突变体寄生虫的表型提供了证据表明它们在体内介导青蒿素抵抗力的证据,这支持体外蒿属植物抗性观察。然而,我们无法将一些P. falciparum K13突变(C580Y和I543t)引入相应的氨基酸残基,而其他引入的突变(M476i和R539T等同物)携带明显的健身成本。我们的研究提供了K13突变在体外和体内在体外调节易患蒿蛋白的易感性和体内的证据证明了P. Berghei模型。我们还表明,在这些突变线中抑制p. perghei蛋白酶偏移寄生虫抗蒿素。摘要最近疟原虫血浆寄生虫抗疟药抗疟药术的抗性的出现特别关注。青蒿素抗性主要由P. falciparum K13蛋白中的突变驱动,其增强了在体外用蒿蛋白活性代谢物二氢氨苄蛋白治疗的早期环级寄生虫的存活,并在体内延迟寄生虫清除率。然而,由于没有易易造型的模型,K13突变与体内蒿属植物抗性的关联已经有问题。在此,我们使用CRISPR / CAS9基因组对工程师选择的直言不可素P. falciparum K13突变进入疟疾的阿尔美霉素敏感疟原虫模型的K13基因。介绍原素P. falciparum K13 F446i,M476i,Y493h和R539T突变进入P. Berghei K13的基因编辑寄生虫,其在标准的24-H体外测定中对二氢氨基蛋白的敏感性降低,并在适应体外环中的存活增加 - 庭院存活测定。突变体P. Berghei K13寄生虫在用artesunate治疗后,在体内延迟清除,并在用青蒿素治疗时达到更快的肾功能衰退。无法将邻近C580Y和I543T突变引入P. Berghei,而M476i和R539T突变的等同物导致显着的生长缺陷。此外,在这些P. Berghei K13突变线中,疟原虫 - 选择性蛋白酶体抑制剂强烈协同促进二氢氨基蛋白作用,提供了进一步的证据表明蛋白酶可以靶向克服青蒿素抗性。我们的研究结果一起为K13多态性参与在体外介导对青蒿素的易感性,最重要的是,在体内条件下,提供明确的实验证据。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号