首页> 外文期刊>MBio >Genetic and Biochemical Analysis of Anaerobic Respiration in Bacteroides fragilis and Its Importance In Vivo
【24h】

Genetic and Biochemical Analysis of Anaerobic Respiration in Bacteroides fragilis and Its Importance In Vivo

机译:<命名含量含量型=“属型”> Bacteroides Fragilis 及其重要性中的遗传和生化分析

获取原文
       

摘要

In bacteria, the respiratory pathways that drive molecular transport and ATP synthesis include a variety of enzyme complexes that utilize different electron donors and acceptors. This property allows them to vary the efficiency of energy conservation and to generate different types of electrochemical gradients (H ~(+) or Na ~(+)). We know little about the respiratory pathways in Bacteroides species, which are abundant in the human gut, and whether they have a simple or a branched pathway. Here, we combined genetics, enzyme activity measurements, and mammalian gut colonization assays to better understand the first committed step in respiration, the transfer of electrons from NADH to quinone. We found that a model gut Bacteroides species, Bacteroides fragilis , has all three types of putative NADH dehydrogenases that typically transfer electrons from the highly reducing molecule NADH to quinone. Analyses of NADH oxidation and quinone reduction in wild-type and deletion mutants showed that two of these enzymes, Na ~(+)-pumping N ADH: q uinone oxido r eductase (NQR) and N ADH d e h ydrogenase II (NDH2), have NADH dehydrogenase activity, whereas H ~(+)-pumping N ADH: u biquinone o xidoreductase (NUO) does not. Under anaerobic conditions, NQR contributes more than 65% of the NADH:quinone oxidoreductase activity. When grown in rich medium, none of the single deletion mutants had a significant growth defect; however, the double Δ nqr Δ ndh2 mutant, which lacked almost all NADH:quinone oxidoreductase activity, had a significantly increased doubling time. Despite unaltered in vitro growth, the single nqr deletion mutant was unable to competitively colonize the gnotobiotic mouse gut, confirming the importance of NQR to respiration in B. fragilis and the overall importance of respiration to this abundant gut symbiont.
机译:在细菌中,驱动分子传输和ATP合成的呼吸道途径包括利用不同的电子供体和受体的各种酶配合物。此属性允许它们改变节能效率,并产生不同类型的电化学梯度(H〜(+)或NA〜(+))。我们对拟枝杆菌种类的呼吸道途径很少,这些膀胱在人体肠道中丰富,以及它们是否具有简单或支链途径。在此,我们组合遗传学,酶活性测量和哺乳动物肠肠道化测定以更好地了解呼吸中的第一个犯下的步骤,从NADH转移电子到醌。我们发现,模型肠道菌株种类,Brocileds Fragilis具有所有三种推定的NADH脱氢酶,其通常从高度还原分子NADH转移电子到醌。野生型和缺失突变体中NADH氧化和醌减少的分析表明,这些酶中的两种,Na〜(+) - 泵送NADH:q Uinone氧化族r防护酶(NQR)和N Adh DeHydOg酶II(NDH2),具有NADH脱氢酶活性,而H〜(+) - 泵送N ADH:U次喹啉o XididoOnasease(Nuo)没有。在厌氧条件下,NQR贡献超过65%的NADH:醌氧化还原酶活性。在富含培养基中生长时,单次缺失突变体均未产生显着的生长缺陷;然而,缺乏几乎所有NADH的双ΔNQRδNDH2突变体:醌氧化还原酶活性显着增加了倍增时间。尽管在体外增长不变,但单一的NQR缺失突变体无法竞争地殖民源性小鼠肠道,证实了NQR在B.Frulilis对呼吸的重要性和呼吸对这一丰富的肠道肠道的总体重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号