...
首页> 外文期刊>MBio >Flagellum-Mediated Mechanosensing and RflP Control Motility State of Pathogenic Escherichia coli
【24h】

Flagellum-Mediated Mechanosensing and RflP Control Motility State of Pathogenic Escherichia coli

机译:鞭毛介导的机械损伤和rflp控制运动状态致病性<命名含量内容型=“属种”>大肠杆菌

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic Escherichia coli strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic E. coli to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic E. coli depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of E. coli , mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic E. coli reflects adaptation to the dual role played by flagella and motility during infection.
机译:细菌鞭毛运动在很多过程中起重要作用,在表面或水凝胶中发生,包括粘附,生物膜形成和细菌 - 宿主相互作用。因此,可以通过表面接触调节鞭毛基因的表达,以及参与生物膜形成和毒力的基因。在少量细菌种类中,已知鞭毛本身用作机械传感器,其中在粘性介质的表面接触或游泳期间经历的鞭毛载荷增加了控制基因表达。在这项研究中,我们表明,通过依赖性机械溶解的基因调节是致病性大肠杆菌菌株的常见。该调节机制需要鞭毛旋转,并且它使致病大肠杆菌能够在液体培养物中的低载荷下抑制鞭毛基因,同时激活多孔介质(软琼脂)或表面接触时的活性。它还控制了其他几种蜂窝功能,包括代谢和信令。致病大肠杆菌中的机械溶解反应取决于抑制液体中鞭毛基因的基底表达的运动率,RFLP(YDIV)。虽然在液体中没有有条件的抑制鞭毛基因表达,因此在大肠杆菌的野生型共生或实验室菌株中观察到多孔培养基中没有上调,可以通过在实验室菌株中通过RFLP的过表达来回收机械敏感调节。我们假设这种病原体大肠杆菌鞭毛基因的这种条件活化反映了对感染​​期间鞭毛和动力的双重作用的适应性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号