...
首页> 外文期刊>Materials >Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering
【24h】

Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering

机译:加工聚酯 - 氨基甲酸酯细丝及FFF 3D印刷弹性多孔结构的表征,具有松质骨组织工程潜力

获取原文
           

摘要

This paper addresses the potential of self-made polyester-urethane filament as a candidate for Fused Filament Fabrication (FFF)-based 3D printing (3DP) in medical applications. Since the industry does not provide many ready-made solutions of medical-grade polyurethane filaments, we undertook research aimed at presenting the process of thermoplastic polyurethane (TPU) filament formation, detailed characteristics, and 3DP of specially designed elastic porous structures as candidates in cancellous tissue engineering. Additionally, we examined whether 3D printing affects the structure and thermal stability of the filament. According to the obtained results, the processing parameters leading to the formation of high-quality TPU filament (TPU_F) were captured. The results showed that TPU_F remains stable under the FFF 3DP conditions. The series of in vitro studies involving long- and short-term degradation (0.1 M phosphate-buffered saline (PBS); 5 M sodium hydroxide (NaOH)), cytotoxicity (ISO 10993:5) and bioactivity (simulated body fluid (SBF) incubation), showed that TPU printouts possessing degradability of long-term degradable tissue constructs, are biocompatible and susceptible to mineralization in terms of hydroxyapatite (HAp) formation during SBF exposure. The formation of HAp on the surface of the specially designed porous tissue structures (PTS) was confirmed by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) studies. The compression test of PTS showed that the samples were strengthened due to SBF exposure and deposited HAp on their surface. Moreover, the determined values of the tensile strength (~30 MPa), Young’s modulus (~0.2 GPa), and compression strength (~1.1 MPa) allowed pre-consideration of TPU_F for FFF 3DP of cancellous bone tissue structures.
机译:本文介绍了自制造聚酯 - 聚氨酯灯丝作为医疗应用中的融合灯丝制造(FFF)的候选者的候选者的潜力。由于该行业不提供许多现成的医疗级聚氨酯长丝解决方案,我们进行了旨在提出热塑性聚氨酯(TPU)长丝形成,详细特性和特殊设计的弹性多孔结构的方法的研究,作为候选人组织工程。此外,我们检查了3D打印是否会影响灯丝的结构和热稳定性。根据所得的结果,捕获导致形成高质量TPU灯丝(TPU_F)的加工参数。结果表明,TPU_F在FFF 3DP条件下保持稳定。一系列体外研究涉及长期和短期降解(0.1M磷酸盐缓冲盐水(PBS); 5米氢氧化钠(NaOH)),细胞毒性(ISO 10993:5)和生物活性(模拟体液(SBF)孵育)显示,具有长期可降解组织构建体具有可降解性的TPU打印输出,在SBF暴露过程中,在羟基磷灰石(HAP)形成方面是生物相容性的并且易于矿化。通过扫描电子显微镜(SEM)和能量分散X射线光谱(EDS)研究,确认了特殊设计的多孔组织结构(PTS)表面上的HAP形成。 PTS的压缩试验表明,由于SBF暴露并在其表面上沉积HAP,加强样品。此外,确定的拉伸强度(〜30MPa),杨氏模量(〜0.2GPa)和压缩强度(〜1.1MPa)的测定值允许预先考虑用于松质骨组织结构的FFF 3DP的TPU_F。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号