...
首页> 外文期刊>Frontiers in Bioengineering and Biotechnology >Alcalase Microarray Base on Metal Ion Modified Hollow Mesoporous Silica Spheres as a Sustainable and Efficient Catalysis Platform for Proteolysis
【24h】

Alcalase Microarray Base on Metal Ion Modified Hollow Mesoporous Silica Spheres as a Sustainable and Efficient Catalysis Platform for Proteolysis

机译:在金属离子修饰的中空介载二氧化硅球体上的alcalase微阵列基部作为蛋白水解的可持续和有效的催化平台

获取原文
   

获取外文期刊封面封底 >>

       

摘要

ABSTRACT: The industrial exploitation of protease is limited owing to its sensitivity to environmental factors and autolysis during biocatalytic processes. In the present study, the alcalase microarray (Bacillus licheniformis, alcalase@HMSS-NH2-Metal) based on different metal ions modified hollow mesoporous silica spheres (HMSS-NH2-Metal) was successfully developed via a facile approach. Among the alcalase@HMSS-NH2-Metal (Ca2+, Zn2+, Fe3+, Cu2+), the alcalase@HMSS-NH2-Fe3+ revealed the best immobilization efficiency and enzymatic properties. This tailor-made nanocomposite immobilized alcalase on a surface-bound network of amino-metal complex bearing protein-modifiable sites via metal-protein affinity. The coordination interaction between metal ion and alcalase advantageously changed the secondary structure of enzyme, thus significantly enhanced the bioactivities and thermostability of alcalase. The as-prepared alcalase@HMSS-NH2-Fe3+ exhibited excellent loading capacity (227.8±23.7 mg/g) and proteolytic activity. Compared to free form, the amidase activity of alcalase microarray increased by 5.3-fold, the apparent kinetic constant Vm/Km of alcalase@HMSS-NH2-Fe3+ (15.6 min-1) was 1.9-fold higher than that of free alcalase, and the biocatalysis efficiency increased by 2.1-fold for bovine serum albumin (BSA) digestion. Moreover, this particular immobilization strategy efficiently reduced the bioactivities losses of alcalase caused by enzyme leaking and autolysis during the catalytic process. The alcalase microarray still retained 70.7 ± 3.7% of the initial activity after 10 cycles of successive reuse. Overall, this study established a promising strategy to overcome disadvantages posed by free alcalase, which provided new expectations for the application of alcalase in sustainable and efficient proteolysis.
机译:摘要:由于其对生物催化过程中的环境因素和自水解的敏感性,蛋白酶的工业开采是有限的。在本研究中,通过容易的方法成功地开发了基于不同金属离子改性的中空介孔二氧化硅球(HMSS-NH2-金属)的alcalase微阵列(Bacillus LiCheniformis,alcalase @ HMSS-NH2-金属)。在alcalase @ HMSS-NH2-金属(CA2 +,Zn2 +,Fe3 +,Cu2 +)中,Alcalase @ HMSS-NH2-Fe3 +揭示了最佳的固定效率和酶特性。通过金属 - 蛋白质亲和力将这种量制的纳米复合材料固定在氨基 - 金属络合物蛋白 - 可改性位点的表面结合网络上的alcalase。金属离子和alcalase之间的配位相互作用有利地改变了酶的二级结构,从而显着提高了alcalase的生物活化和热稳定性。 HMSS-NH2-FE3 +的AS制备的AS-WMSS-NH2-FE3 +表现出优异的负载能力(227.8±23.7mg / g)和蛋白水解活性。与游离形式相比,丙酸酯微阵列的酰胺酶活性增加了5.3倍,表观动力学常数Vm / km的alcalase-NH2-Fe3 +(15.6 min-1)比游离alcalase高1.9倍,生物分析效率增加了2.1倍的牛血清白蛋白(BSA)消化。此外,这种特殊的固定策略有效地降低了催化过程中酶泄漏和自水解引起的alcalase的生物活性损失。在连续再利用的10个循环后,alcalase微阵列仍保留70.7±3.7%的初始活动。总体而言,这项研究建立了克服游离alcalase造成的缺点的有希望的策略,这为在可持续和有效的蛋白水溶性中施用alcalase提供了新的期望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号