...
首页> 外文期刊>Frontiers in Plant Science >Editorial: NAD Metabolism and Signaling in Plants
【24h】

Editorial: NAD Metabolism and Signaling in Plants

机译:社论:NAD新陈代谢和植物信号

获取原文
           

摘要

Since its discovery more than a century ago and the conferral of several Nobel laureates for ground-breaking works concerning the molecule, nicotinamide adenine dinucleotide (NAD) is recognized as a fascinating metabolic cornerstone for all living organisms ( Berger et?al., 2004 ). This ubiquitous pyridine nucleotide (and its phosphorylated relative, NADP) is an energy cofactor and signal-carrying molecule exerting vital functions in plant metabolic pathways and regulatory processes ( Hashida et?al., 2009 ; Gakière et?al., 2018b ; Gakière et?al., 2018a ). Molecular studies on NAD involved transcript, protein, and metabolite profiling, and revealed a particularly complex signaling network that can impact not only the core biochemistry of the plant (e.g. photosynthesis, respiration, energy), but also responses to various stress, more importantly immune responses ( Zhang and Mou, 2009 ; Pétriacq et?al., 2012 ; Pétriacq et?al., 2016 ; Alferez et?al., 2018 ; Hashida et?al., 2018 ). Remarkably, compelling evidence indicate that NAD can be released into the extracellular space, where it is sensed by cell surface receptors ( Wang et?al., 2017 ; Wang et?al., 2019 ). However, the detailed mechanisms by which NAD acts as a regulator of plant physiology are still poorly understood. This Research Topic gathers some cardinal knowledge on the functions of NAD in plants. Two papers in the issue focus on the key enzyme NAD kinase which phosphorylates NAD(H) forming NADP(H) ( Gakière et?al., 2018a ) _(.) The first review by Ishikawa and Kawai-Yamada examined the roles of the enzyme in cyanobacteria—the evolutionary ancestor of land plant chloroplasts which has a far simpler level of compartmentation, in the oxidative pentose phosphate pathway, the glycolysis, and the pyridine nucleotide transhydrogenase proton translocation system. Survey of 72 cyanobacterial genomes revealed that 69 express a typical NAD kinase, raising the intriguing questions how typical NAD kinases contribute to NAD(P)(H) homeostasis in cyanobacteria and how this is regulated in the species containing the atypical NAD kinases. Also intriguing is the genetic identification of one of the latter as a factor linked to fast growth ( Ungerer et?al., 2018 ). However, a number of open questions remain, mainly why cyanobacteria need multiple NAD kinases and what the specific roles of the paralogs are. Further biochemical work alongside that on the membrane permeability of NAD(P)H will go a long way to addressing these questions. Secondly, Tai et al. reviewed the interplay of NAD kinases with calmodulin-mediated calcium signaling. They described the importance of the balance between NADP(H) and NAD(H) providing evidence suggesting that in response to allosteric regulation NAD kinase is a key regulator of the NADP(H)/NAD(H) ratio ( Li et?al., 2018 ). They then listed the evidence that calmodulin activates NAD kinase before performing a detailed analysis of wheat calmodulins, including predictions of gene and protein structures alongside subcellular localization and structure function studies. This provided a comprehensive overview of the putative regulatory control these proteins exhibit on NAD kinase ( Tai et al. ). Next, the review described the feedback regulation by NAD ~(+) derivatives, which is necessary for maintaining the dynamic balance of the cellular metabolites that ensure the normal operation of life activities. Under sunlight, photosynthetic electron transfer chain is the primary source of NADPH as reducing power for assimilation of CO _(2) by the Calvin cycle. However, under stress conditions that weaken enzyme activity involved in the Calvin cycle, decline of NADPH usage and NADP ~(+) recycling occurs and photosynthetic electron flow can be overloaded resulting in generation of reactive oxygen species. Thus, the NADP(H) pool size and redox state are crucial for the chloroplastic redox balance. An important fact is that, at the beginning of photosynthesis, NADP ~(+) supply control is dominated by de novo NADP ~(+) synthesis rather than recycling from the Calvin cycle. In addition, the activity of NADP ~(+) synthesis and the NADP pool size varies depending on the light conditions and the ferredoxin-thioredoxin system, by which NADP ~(+) is reduced to NADPH. NAD ~(+) is exclusively produced in the cytosol, although NADP ~(+) is produced at on demand sites (cytosol, chloroplasts, and peroxisomes) by various isoforms of NAD kinase. Therefore, the regulatory mechanism of cytosolic NAD ~(+) supply is also involved in the chloroplastic NADP ~(+) supply control. Hashida and Kawai-Yamada summarized the regulatory mechanisms of NADP ~(+) production, focusing on the interactions, crosstalk, and co-regulation between chloroplasts and the cytoplasm at the level of NAD ~(+) metabolism and molecular transport. NAD metabolism underlies a number of NAD-processing reactions. To start recycling NAD from nicotinate (NA), plants developed various strategies to overcome
机译:自发现以来的发现以来,诺洛尼酰胺腺嘌呤二核苷酸(NAD)的几个世纪以前和几个诺贝尔奖酶的统一性纳米胺腺嘌呤二核苷酸(NAD)被认为是所有生物体的迷人代谢基石(Berger et?Al。,2004) 。这种无处不在的吡啶核苷酸(及其磷酸化相对,NADP)是能量辅因子和携带植物代谢途径和调控过程中重要功能的信号携带分子(Hashida等,2009;Gakière等,2018b;gakièreet ?al。,2018a)。 NAD的分子研究涉及转录物,蛋白质和代谢物分析,并揭示了一种特别复杂的信号网络,其不仅可以影响植物的核心生物化学(例如光合作用,呼吸,能量),而且影响各种压力,更重要的是免疫力答复(张某,2009;PétriacQ等,2012年,2012年;Péravq等,2016; Alferez等,2018; Hashida等,2018)。值得注意的是,令人信地的证据表明,NAD可以释放到细胞外空间中,在细胞表面受体中感测(Wang et?Al。,2017; Wang et?Al。,2019)。然而,NAD作为植物生理学调节剂的详细机制仍然不知所措。该研究主题会收集一些关于NAD在植物中的功能的基本知识。问题中的两篇论文重点关注磷酸化NAD(h)形成NADP(H)的关键酶NAD激酶(Gakière等,2018A)_(。)由Ishikawa和Kawai-yamada的第一次审查审查了该角色蓝藻中的酶 - 在氧化戊糖磷酸途径,糖溶解和吡啶核苷酸转氢酶质子易位系统中具有较小的植物叶绿体的进化祖先。 72个蓝藻基因组的调查显示,69表达典型的NAD激酶,提高了典型的NAD激酶有助于典型的NAD激酶在蓝藻中有助于NAD(P)(h)稳态,以及如何在含有非典型NAD激酶的物种中调节。还有兴趣是后者之一的遗传鉴定,作为与快速生长有关的因素(Ungerer et?Al。,2018)。然而,仍然存在许多开放性问题,主要是为什么蓝细菌需要多个NAD激酶以及伞病的具体角色是什么。进一步的生化工作与NAD的膜渗透率相同(P)H将有很长的路要解决这些问题。其次,泰等人。用钙调蛋白介导的钙信号传递综述NAD激酶的相互作用。他们描述了NADP(H)和NAD(H)之间的平衡的重要性,提供了证据表明,响应于构建调节NAD激酶是NADP(H)/ NAD(H)比率的关键调节因子(Li et?Al。 ,2018)。然后,他们列出了钙调蛋白在进行小麦钙调素的详细分析之前激活NAD激酶的证据,包括亚细胞定位和结构函数研究的基因和蛋白质结构的预测。这提供了全面的调节控制这些蛋白质在NAD激酶(Tai等)上表现出的概述。接下来,审查描述了NAD〜(+)衍生物的反馈调节,这对于维持蜂窝代谢物的动态平衡是必要的,以确保生命活动的正常运行。在阳光下,光合电子转移链是NADPH的主要来源,作为CALVIN循环同化CO _(2)的降低功率。然而,在减弱酶活性涉及Calvin循环中的酶活性的压力条件下,发生NADPH使用和NADP〜(+)再循环的下降,并且可以过载光合电子流动,从而产生反应性氧物种。因此,NADP(H)池尺寸和氧化还原状态对于氯塑性氧化还原平衡至关重要。重要事实是,在光合作用的开始时,NADP〜(+)供应控制由De Novo NADP〜(+)合成主导而不是从Calvin循环中回收。此外,NADP〜(+)合成的活性和NADP池尺寸根据光条件和富勒沙昔林毒素系统而变化,其中NADP〜(+)降低到NADPH。 NAD〜(+)仅在胞质溶胶中产生,尽管NADP〜(+)由NAD激酶的各种同种型在需求部位(细胞溶胶,叶绿体和过氧化物)上产生。因此,细胞溶质NAD〜(+)供应的调节机制也参与了叶片NADP〜(+)供应管制。 Hashida和Kawai-yamada总结了NADP〜(+)生产的监管机制,重点是叶绿体和NAD〜(+)代谢水平和分子运输水平之间的相互作用,串扰和共调控。 NAD新陈代谢隐患了许多NAD加工反应。要从烟酸盐(NA)开始回收NAD,植物制定了各种策略来克服

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号