首页> 外文期刊>Frontiers in Materials >Hierarchical Machine Learning Model for Mechanical Property Predictions of Polyurethane Elastomers From Small Datasets
【24h】

Hierarchical Machine Learning Model for Mechanical Property Predictions of Polyurethane Elastomers From Small Datasets

机译:来自小型数据集的聚氨酯弹性体的机械性能预测的分层机器学习模型

获取原文
           

摘要

Polyurethanes are a broad class of material that finds application in coatings, foams, and solid elastomers. The urethane chemistry allows a diversity of monomers to be used, and prediction of mechanical properties, which are determined by complex interplay between monomer chemistry and chain architecture, is an unresolved challenge. Urethanes are based on aromatic or cyclic isocyanates and linear or branched polyols, and polymerization results in linear chains for bifunctional monomers or branched chains for multifunctional monomers. Strong intermolecular interactions between aromatic groups result in the formation of hard-segment domains that generate physical crosslinks between disorganized rubbery domains and anchor the material microstructure, contributing to resistance to deformation. Here, a general hierarchical machine learning (HML) model for predicting the stress-at-break, strain-at-break, and Tan δ for thermoplastic and thermoset polyurethanes is presented. The algorithm was trained on a library of 18 polymers with different diisocyanates, bifunctional or trifunctional polyols, and NCO:OH index. HML reduces data requirements through robust embedding of domain knowledge and surrogate data in a middle layer that bridges input variables (composition) and output responses (mechanical properties). In this work, the middle layer included information on overall polymer composition, predictions of chain architecture derived from Monte Carlo simulations of polymerization, information on interchain interactions from empirically derived molecular potentials and shifts in infrared (IR) spectroscopy absorbances. The HML predictions are shown to be more accurate than those from a Random Forest model directly relating composition and properties, suggesting that embedding domain knowledge provides significant advantages in predicting the properties of complex material systems based on small datasets.
机译:聚氨酯是一种广泛的材料,可在涂层,泡沫和固体弹性体中施用。氨基甲酸酯化学允许使用的单体多样性,并且通过单体化学和链架构之间的复杂相互作用来确定机械性能的预测,是一个未解决的挑战。氨基甲酸酯基于芳族或环状异氰酸酯和线性或支链多元醇,并且聚合导致用于双官能单体的线性链或用于多官能单体的支链链。芳族基团之间的强的分子间相互作用导致形成在混乱的橡胶结构结构域和锚固物质微观结构之间产生物理交联的硬段结构域,这有助于抵抗变形。这里,提出了一种用于预测热塑性和热固性聚氨酯的应力 - 断裂,应变抗断裂和TANδ的一般层次机学习(HML)模型。该算法在具有不同二异氰酸酯,双官能或三官能多元醇和NCO的18种聚合物库中培训,以及NCO:OH指标。 HML通过强大地嵌入域中的域知识和桥接输入变量(组成)和输出响应(机械性能)中的中间层中的域名知识和代理数据来减少数据要求。在这项工作中,中间层包括关于总体聚合物组合物的信息,从蒙特卡罗的聚合仿真来源的链式建筑的预测,关于与经验源自分子电位的间歇性相互作用的信息,以及红外(IR)光谱吸收。 HML预测显示比从直接相关的组成和性质的随机林模型的预测更准确,表明嵌入域知识提供了基于小型数据集的复杂材料系统的性能来提供显着的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号