首页> 外文期刊>Frontiers in Computational Neuroscience >ROOTS: An Algorithm to Generate Biologically Realistic Cortical Axons and an Application to Electroceutical Modeling
【24h】

ROOTS: An Algorithm to Generate Biologically Realistic Cortical Axons and an Application to Electroceutical Modeling

机译:根源:一种生成生物逼真的皮质轴突的算法和电气建模的应用

获取原文
           

摘要

Advances in computation and neuronal modeling have enabled the study of entire neural tissue systems with an impressive degree of biological realism. These efforts have focused largely on modeling dendrites and somas while largely neglecting axons. The need for biologically realistic explicit axonal models is particularly clear for applications involving clinical and therapeutic electrical stimulation because axons are generally more excitable than other neuroanatomical subunits. While many modeling efforts can rely on existing repositories of reconstructed dendritic/somatic morphologies to study real cells or to estimate parameters for a generative model, such datasets for axons are scarce and incomplete. Those that do exist may still be insufficient to build accurate models because the increased geometric variability of axons demands a proportional increase in data. To address this need, a Ruled-Optimum Ordered Tree System (ROOTS) was developed that extends the capability of neuronal morphology generative methods to include highly branched cortical axon terminal arbors. Further, this study presents and explores a clear use-case for such models in the prediction of cortical tissue response to externally applied electric fields. The results presented herein comprise (i) a quantitative and qualitative analysis of the generative algorithm proposed, (ii) a comparison of generated fibers with those observed in histological studies, (iii) a study of the requisite spatial and morphological complexity of axonal arbors for accurate prediction of neuronal response to extracellular electrical stimulation, and (iv) an extracellular electrical stimulation strength–duration analysis to explore probable thresholds of excitation of the dentate perforant path under controlled conditions. ROOTS demonstrates a superior ability to capture biological realism in model fibers, allowing improved accuracy in predicting the impact that microscale structures and branching patterns have on spatiotemporal patterns of activity in the presence of extracellular electric fields.
机译:计算和神经元建模的进步使整个神经组织系统的研究具有令人印象深刻的生物现实主义程度。这些努力主要集中在很大程度上,在很大程度上忽略了轴突的同时造型。对于涉及临床和治疗电刺激的应用,对生物学现实的显式轴突模型的需求特别清楚,因为轴突通常比其他神经杀菌亚基更易于激发。虽然许多建模努力可以依赖于重建的树突/体制形态的现有存储库来研究真实的细胞或估计生成模型的参数,但是轴突的这种数据集是稀缺和不完整的。那些确实的那些可能仍然不足以建立准确的模型,因为轴突的增加的几何变异性要求数据的比例增加。为了解决这种需求,开发了一种统治最佳有序的树系统(根),其延伸了神经元形态生成方法的能力,以包括高度分支皮质轴突终端轴。此外,该研究涉及并探索在预测外部应用电场的皮质组织响应中的这种模型的清晰用例。本文呈现的结果包括(i)所提出的生成算法的定量和定性分析,(ii)与组织学研究中观察到的那些的生成纤维的比较,(iii)对轴突术的必要空间和形态复杂性的研究精确地预测细胞外电刺激的神经元反应,(iv)细胞外电刺激强度持续时间分析,以探讨受控条件下牙齿穿孔路径的可能性阈值。根源展示了捕获模型纤维中的生物现实主义的卓越能力,从而提高了预测微观结构和分支模式在细胞外电场存在下对瞬间活性的影响的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号