首页> 外文期刊>Global change biology bioenergy >Integration in a depot‐based decentralized biorefinery system: Corn stover‐based cellulosic biofuel
【24h】

Integration in a depot‐based decentralized biorefinery system: Corn stover‐based cellulosic biofuel

机译:集成在基于仓库的分散的生物遗料系统:基于玉米秸秆的纤维素生物燃料

获取原文
           

摘要

The current or “conventional” paradigm for producing process energy in a biorefinery processing cellulosic biomass is on‐site energy recovery through combustion of residual solids and biogas generated by the process. Excess electricity is then exported, resulting in large greenhouse gas (GHG) credits. However, this approach will cause lifecycle GHG emissions of biofuels to increase as more renewable energy sources (wind, solar, etc.) participate in grid‐electricity generation, and the GHG credits from displacing fossil fuel decrease. To overcome this drawback, a decentralized (depot‐based) biorefinery can be integrated with a coal‐fired power plant near a large urban area. In an integrated, decentralized, depot‐based biorefinery (IDB), the residual solids are co‐fired with coal either in the adjacent power plant or in coal‐fired boilers elsewhere to displace coal. An IDB system does not rely on indirect GHG credits through grid‐electricity displacement. In an IDB system, biogas from the wastewater treatment facility is also upgraded to biomethane and used as a transportation biofuel. The GHG savings per unit of cropland in the IDB systems (2.7–2.9 MgCOsub2/sub/ha) are 1.5–1.6 fold greater than those in a conventional centralized system (1.7–1.8 MgCOsub2/sub/ha). Importantly, the biofuel selling price in the IDBs is lower by 28–30 cents per gasoline‐equivalent liter than in the conventional centralized system. Furthermore, the total capital investment per annual biofuel volume in the IDB is much lower (by ~80%) than that in the conventional centralized system. Therefore, utilization of biomethane and residual solids in the IDB systems leads to much lower biofuel selling prices and significantly greater GHG savings per unit of cropland participating in the biorefinery system compared to the conventional centralized biorefineries.
机译:用于生产纤维素生物质中的用于生产过程能量的流程或“常规”范式是通过该方法产生的残余固体和沼气的燃烧现场能量恢复。然后出口过量的电力,导致大型温室气体(GHG)信用。然而,这种方法将导致生物燃料的生命周期变化,随着更多可再生能源(风,太阳能等)参与电网发电,GHG信贷从出口化化石燃料减少。为了克服这一缺点,可以将分散的(基于仓库的)生物料理与大城区附近的燃煤电厂集成。在整合,分散的基于仓库的生物遗料(IDB)中,残留的固体在相邻的电厂或其他地方的燃煤锅炉中与煤共同用煤。 IDB系统不依赖于通过电网位移的间接温度信贷。在IDB系统中,来自废水处理设施的沼气也升级为生物甲烷并用作自动化生物燃料。 IDB系统(2.7-2.9 mgco 2 / ha)中每单位农田的GHG节省比传统集中系统(1.7-1.8mgco 2 <)的1.5-1.6倍。 / sub> / ha)。重要的是,在IDBS中的生物燃料销售价格每汽油升低28-30美分而不是传统的集中系统。此外,IDB中每年生物燃料量的总资本投资远低于传统集中系统的生物燃料量低得多(〜80%)。因此,与传统的集中性生物档案相比,在IDB系统中利用BioMethane和残余固体导致生物燃料价格远低于生物燃料销售价格,并且每单位农田的节省更大的GHG节省。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号