...
首页> 外文期刊>Global change biology bioenergy >Candidate perennial bioenergy grasses have a higher albedo than annual row crops
【24h】

Candidate perennial bioenergy grasses have a higher albedo than annual row crops

机译:候选人多年生生物能源草具有比年度行作物更高的反诉

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observational and model-based approaches have investigated biogeochemical trade-offs, such as increased carbon sequestration and increased water use, associated with growing cellulosic feedstocks. A less understood aspect is the biogeophysical changes associated with the difference in albedo ( α ), which could alter the local energy balance and cause local to regional cooling several times larger than that associated with offsetting carbon. Here, we established paired fields of Miscanthus?×?giganteus (miscanthus) and Panicum virgatum (switchgrass), two of the leading perennial cellulosic feedstock candidates, and traditional annual row crops in the highly productive ‘Corn-belt’. Our results show that miscanthus did and switchgrass did not have an overall higher α than current row crops, but a strong seasonal pattern existed. Both perennials had consistently higher growing season α than row crops and winter α did not differ. The lack of observed differences in winter α , however, masked an interaction between snow cover and species differences, with the perennial species, compared with the row crops, having a higher α when snow was absent and a much lower α when snow was present. Overall, these changes resulted in an average net reduction in annual absorbed energy of about 5?W?msup?2/sup for switchgrass and about 8?W?msup?2/sup for miscanthus relative to annual crops. Therefore, the conversion from annual row to perennial crops alters the radiative balance of the surface via changes in α and could lead to regional cooling.
机译:生物能源常年纤维素原料的生产呈现出各种区域经济和国家能源供应的潜力,同时也担任气候“监管机构”,由于许多相对于行作物的生物地球化学和生物果实差异。众多观测和模型的方法研究了与生长纤维素原料相关的生物地球化学折衷,例如增加的碳封存和增加的用水量。较少理解的方面是与反玻璃(α)的差异相关的生物果实改变,其可以改变局部能量平衡并导致局部冷却比与偏移碳的局部大量的次数大。在这里,我们建立了Miscanthus的配对领域?×?Giganteus(Miscanthus)和Panicum Virgatum(Switchgrass),两种主要的常年纤维素原料候选者,以及高生产率的“玉米带”中的传统年度行作物。我们的结果表明,MISCanthus Dod和SwitchGrass没有比当前的行作物更高的α,而是存在强烈的季节性模式。多年生的季节α始终较高,而不是排作弊,冬季α没有差异。然而,冬季α缺乏观察到的差异掩盖了雪覆盖物和物种差异之间的相互作用,与行作物相比,当雪不存在时具有更高的α并且当存在下雪时α更低的α。总的来说,这些变化导致年度吸收能量的平均净降低约为5?W?m Δ2为switchgrass和约8?w?m ?2 用于miscanthus相对于年度作物。因此,从年度排到多年生作物的转化通过α的变化改变了表面的辐射平衡,并且可能导致区域冷却。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号