首页> 外文期刊>Geoscientific Model Development >Hindcasting and forecasting of regional methane from coal mine emissions in the Upper Silesian Coal Basin using the online nested global regional chemistry–climate model MECO(n) (MESSy v2.53)
【24h】

Hindcasting and forecasting of regional methane from coal mine emissions in the Upper Silesian Coal Basin using the online nested global regional chemistry–climate model MECO(n) (MESSy v2.53)

机译:使用在线嵌套全球区域化学 - 气候模型MECO(N)使用在线嵌套煤池中煤矿排放区域甲烷区域甲烷的煤矿排放预测及预测

获取原文
           

摘要

Methane is the second most important greenhouse gas in terms of anthropogenic radiative forcing. Since pre-industrial times, the globally averaged dry mole fraction of methane in the atmosphere has increased considerably. Emissions from coal mining are one of the primary anthropogenic methane sources. However, our knowledge about different sources and sinks of methane is still subject to great uncertainties. Comprehensive measurement campaigns and reliable chemistry–climate models, are required to fully understand the global methane budget and to further develop future climate mitigation strategies. The CoMet 1.0 campaign (May to June?2018) combined airborne in situ, as well as passive and active remote sensing measurements to quantify the emissions from coal mining in the Upper Silesian Coal Basin (USCB, Poland). Roughly 502 kt of methane is emitted from the ventilation shafts per year. In order to help with the flight planning during the campaigns, we performed 6 d forecasts using the online coupled, three-time nested global and regional chemistry–climate model MECO(n). We applied three-nested COSMO/MESSy instances going down to a spatial resolution of 2.8 km over the USCB. The nested global–regional model system allows for the separation of local emission contributions from fluctuations in the background methane. Here, we introduce the forecast set-up and assess the impact of the model's spatial resolution on the simulation of methane plumes from the ventilation shafts. Uncertainties in simulated methane mixing ratios are estimated by comparing different airborne measurements to the simulations. Results show that MECO(3) is able to simulate the observed methane plumes and the large-scale patterns (including vertically integrated values) reasonably well. Furthermore, we obtain reasonable forecast results up to forecast day four.
机译:甲烷是人为辐射强迫方面的第二个最重要的温室气体。自预工业时间以来,大气中全球平均的干摩尔甲烷的甲烷的甲烷差异很大。煤矿的排放是原发性人为甲烷来源之一。然而,我们对不同来源和甲烷水槽的知识仍然存在很大的不确定性。综合测量活动和可靠的化学气候模型,需要充分了解全球甲烷预算,并进一步发展未来的气候缓解策略。 Comet 1.0竞选(5月至6月〜2018)原位组合起步,以及被动和主动遥感测量,以量化上部Silesian煤盆中煤矿的排放(USCB,波兰)。大约502千克甲烷从每年通风轴​​发射。为了帮助在活动期间的航班计划,我们使用在线耦合,三次嵌套全球和区域化学 - 气候模型MECO(N)进行6天预测。我们将三个嵌套的COSMO /杂乱实例施加到USCB上2.8公里的空间分辨率。嵌套的全球区域模型系统允许将局部排放贡献与背景甲烷的波动分开。在这里,我们介绍了预测设置,并评估了模型的空间分辨率对来自通风轴的甲烷羽毛模拟的影响。通过将不同的空中测量与模拟进行比较,估计模拟甲烷混合比中的不确定性。结果表明,Meco(3)能够合理地模拟观察到的甲烷羽毛和大规模模式(包括垂直集成值)。此外,我们获得了合理的预测结果,以预测第四天。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号