首页> 外文期刊>Geoscientific Model Development >Prediction of source contributions to urban background PMsub10/sub concentrations in European cities: a case study for an episode in December 2016 using EMEP/MSC-W rv4.15 and LOTOS-EUROS v2.0 – Part 1: The country contributions
【24h】

Prediction of source contributions to urban background PMsub10/sub concentrations in European cities: a case study for an episode in December 2016 using EMEP/MSC-W rv4.15 and LOTOS-EUROS v2.0 – Part 1: The country contributions

机译:欧洲城市中城市背景下PM 10 浓度的源贡献预测:2016年12月使用EMEP / MSC-W RV4.15和Lotos-EUROS v2.0的一集的案例研究 - 第1部分:国家捐款

获取原文
           

摘要

A large fraction of the urban population in Europe is exposed to particulate matter levels above the WHO guideline value. To make more effective mitigation strategies, it is important to understand the influence on particulate matter (PM) from pollutants emitted in different European nations. In this study, we evaluate a country source contribution forecasting system aimed at assessing the domestic and transboundary contributions to PM in major European cities for an episode in December?2016. The system is composed of two models (EMEP/MSC-W rv4.15 and LOTOS-EUROS v2.0), which allows the consideration of differences in the source attribution. We also compared the PM10 concentrations, and both models present satisfactory agreement in the 4 d forecasts of the surface concentrations, since the hourly concentrations can be highly correlated with in situ observations. The correlation coefficients reach values of up to 0.58 for LOTOS-EUROS and 0.50 for EMEP for the urban stations; the values are 0.58 for LOTOS-EUROS and 0.72 for EMEP for the rural stations. However, the models underpredict the highest hourly concentrations measured by the urban stations (mean underestimation of 36 %), which is to be expected given the relatively coarse model resolution used (0.25° longitude × 0.125° latitude). For the source attribution calculations, LOTOS-EUROS uses a labelling technique, while the EMEP/MSC-W model uses a scenario having reduced anthropogenic emissions, and then it is compared to a reference run where no changes are applied. Different percentages (5 %, 15 %, and 50 %) for the reduced emissions in the EMEP/MSC-W model were used to test the robustness of the methodology. The impact of the different ways to define the urban area for the studied cities was also investigated (i.e. one model grid cell, nine grid cells, and grid cells covering the definition given by the Global Administrative Areas – GADM). We found that the combination of a 15 % emission reduction and a larger domain (nine grid cells or GADM) helps to preserve the linearity between emission and concentrations changes. The nonlinearity, related to the emission reduction scenario used, is suggested by the nature of the mismatch between the total concentration and the sum of the concentrations from different calculated sources. Even limited, this nonlinearity is observed in the NO3-, NH4+, and H2O concentrations, which is related to gas–aerosol partitioning of the species. The use of a 15 % emission reduction and of a larger city domain also causes better agreement on the determination of the main country contributors between both country source calculations. Over the 34 European cities investigated, PM10 was dominated by domestic emissions for the studied episode (1–9?December?2016). The two models generally agree on the dominant external country contributor (68 % on an hourly basis) to PM10 concentrations. Overall, 75 % of the hourly predicted PM10 concentrations of both models have the same top five main country contributors. Better agreement on the dominant country contributor for primary (emitted) species (70 % is found for primary organic matter (POM) and 80 % for elemental carbon – EC) than for the inorganic secondary component of the aerosol (50 %), which is predictable due to the conceptual differences in the source attribution used by both models. The country contribution calculated by the scenario approach depends on the chemical regime, which largely impacts the secondary components, unlike the calculation using the labelling approach.
机译:欧洲城市人口的大部分暴露于颗粒物质水平,高于世界卫生组织的准则价值。为了更加有效的缓解策略,了解不同欧洲国家排放的污染物的颗粒物质(PM)的影响非常重要。在这项研究中,我们评估了一个国家来源贡献预测系统,旨在评估12月在欧洲主要城市中的国内和跨界捐款?2016年。该系统由两个模型(EMEP / MSC-W RV4.15和Lotos-EuRos V2.0)组成,允许考虑源归因的差异。我们还比较了PM10浓度,并且两种模型在表面浓度的4D预测中呈现令人满意的协议,因为小时浓度可以与原位观察结果高度相关。相关系数达到高达0.58的Lotos-EURO和0.50的EEP用于城市站的价值;对于农村站,Lotos-EURO和0.72的值为0.58。然而,模型承诺由城市站测量的最高小时浓度(平均低估36%),这是为了鉴于使用的相对粗略的模型分辨率(0.25°经度×0.125°纬度)。对于源归因计算,Lotos-EUROS使用标签技术,而EMEP / MSC-W模型使用具有减少的人为排放的场景,然后将其与施加变化的参考运行进行比较。 EMEP / MSC-W模型中减少排放的不同百分比(5%,15%和50%)用于测试方法的稳健性。还研究了不同方式定义研究城市的城市地区的影响(即一个模型网格细胞,九个网格细胞和覆盖全球行政区域 - 甘薯给出的定义的网格细胞)。我们发现,15%减排和较大域(九个网格细胞或甘薯)的组合有助于保持发射和浓度之间的线性。与所用的减排场景有关的非线性是通过来自不同计算来源的浓度的总浓度和浓度之和的不匹配性质来提出。甚至有限,在NO3-,NH4 +和H2O浓度下观察到这种非线性,其与物种的气溶胶分配有关。使用15%的减排和较大的城市领域的减排也会导致关于各国源计算之间的主要国家贡献者的确定。在调查的34个欧洲城市,PM10是由学习集的国内排放的主导(1-9岁?2016年12月?2016年)。这两种型号通常就PM10浓度达到主导的外国贡献者(每小时68%)。总体而言,75%的每小时预测的PM10浓度的两种型号都有相同的五大主要国家贡献者。对主要(发射)物种的主导国家贡献者的更好协议(70%用于初级有机物(POM)和元素碳 - EC的80%),而不是气溶胶的无机二次组分(50%),这是由于两种模型使用的源归因的概念差异,可预测。与使用标签方法的计算不同,通过方案方法计算的国家贡献取决于化学制度,该化学制度在很大程度上影响辅助组分。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号