...
首页> 外文期刊>Geosciences >Investigations into the First Operational Aquifer Thermal Energy Storage System in Wallonia (Belgium): What Can Potentially Be Expected?
【24h】

Investigations into the First Operational Aquifer Thermal Energy Storage System in Wallonia (Belgium): What Can Potentially Be Expected?

机译:调查瓦隆(比利时)的第一家运营含水层热能储存系统:可能预期的是什么?

获取原文

摘要

In the context of energy transition, new and renovated buildings often include heating and/or air conditioning energy-saving technologies based on sustainable energy sources, such as groundwater heat pumps with aquifer thermal energy storage. A new aquifer thermal energy storage system was designed and is under construction in the city of Liège, Belgium, along the Meuse River. This system will be the very first to operate in Wallonia (southern Belgium) and should serve as a reference for future shallow geothermal developments in the region. The targeted alluvial aquifer reservoir was thoroughly characterized using geophysics, pumping tests, and dye and heat tracer tests. A 3D groundwater flow heterogeneous numerical model coupled to heat transport was then developed, automatically calibrated with the state-of-the-art pilot points method, and used for simulating and assessing the future system efficiency. A transient simulation was run over a 25 year-period. The potential thermal impact on the aquifer, based on thermal needs from the future building, was simulated at its full capacity in continuous mode and quantified. While the results show some thermal feedback within the wells of the aquifer thermal energy storage system and heat loss to the aquifer, the thermal affected zone in the aquifer extends up to 980 m downstream of the building and the system efficiency seems suitable for long-term thermal energy production.
机译:在能量过渡的背景下,新的和经过翻新的建筑通常包括基于可持续能源的加热和/或空调节能技术,例如具有含水层热能存储的地下水热泵。设计了一种新的含水液热能存储系统,并在Meuse River沿着Meuse河的Liège城市建造。该系统将是瓦隆亚州(南比利时)首先运营的,并应作为该地区未来浅层地热发展的参考。使用地球物理,泵送试验和染料和热示踪试验进行了彻底的冲积含水层水库。然后开发了与热传输相连的3D地下水流异构数值模型,用最先进的试点点法自动校准,用于模拟和评估未来的系统效率。瞬态模拟在25年内运行。基于未来建筑物的热需求,在连续模式下的全部容量和量化地模拟了对含水层对含水层的热冲击。虽然结果显示了含水层热能储存系统的井中的一些热反馈和对含水层的热量损失,含水层中的热影响区域延伸到建筑物下游高达980米,系统效率似乎适用于长期热能生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号