首页> 外文期刊>European Journal of Physics Education >What Are the Electrons Really Doing in Molecules? A Space-Time Picture
【24h】

What Are the Electrons Really Doing in Molecules? A Space-Time Picture

机译:在分子中真正做的是什么?空间时间图片

获取原文
       

摘要

This is fundamental and pedagogical work in quantum physics/chemistry, where we try to illustrate the Mulliken question, “what are the electrons really doing in molecules?”; and we briefly review the development of the most popular numerical approaches in computational chemistry. We examine in a novel approach, how we can overall describe the electronic interactions in atomic systems with the conceptual help of a space-time picture of quantum mechanics. This is not a research article initially looking for new numerical results, but for the imperative fundamental reinterpretation of the (non-classical and stabilizing) electronic exchange and correlation energies, from the point of view of space-time scattering events between electrons. Consistently, we introduce Feynman type diagrams as pictorial representation of the (abstract) enthalpic integrals, scattering mechanisms, in quantum chemistry. In atomic structures, it is almost impossible to fully understand, covalent bonding, electronic enthalpies, surface science, orbital magnetism, catalysis… without computational chemistry. How well do we know the physical meaning of the quantum mechanisms behind the numerical approaches? We give an educational hit to this question, following the philosophy of R.P. Feynman, “just recognizing old things from a new point of view”. The possibility of interpreting Coulomb and Fermi holes with space-time of diagrams goes deep into the quantum behaviour of electrons, because the Coulomb forces in atomic systems create interreference patterns and then electrons cannot fill the electrostatic potentials everywhere as in classical mechanics. Quantum mechanics allows electrons in atoms to collide in scatting events, introducing space-time mechanisms that reduce the repulsion energy; and actual successful computational chemistry methods include an average approximation to these stabilization mechanisms.
机译:这是Quantum物理/化学的基本和教学作品,在那里我们试图说明Mulliken的问题,“在分子中真正做的是什么?”;我们简要介绍了计算化学中最受欢迎的数值方法的发展。我们以一种小说方法检查,我们如何整体描述原子系统中的电子交互,其中包括量子力学的时空图像的概念帮助。这不是最初寻找新的数值结果的研究文章,而是为了从电子之间的时空散射事件的角度来看,对于(非古典和稳定)电子交换和相关能量的必要基础重新诠释。始终如一地,我们将Feynman型图介绍为(摘要)焓积分,散射机制,散射机制,在量子化学中。在原子结构中,几乎不可能完全理解,共价粘合,电子焓,表面科学,轨道磁,催化......没有计算化学。我们如何了解数值方法背后量子机制的物理意义?在R.P. Feynman的哲学之后,我们向这个问题提供了一个教育袭击了这个问题,“只是从一个新的角度识别旧事物”。用图表的时空解释库仑和费米孔的可能性深入进入电子的量子行为,因为原子系统中的库仑力产生互动图案,然后电子不能像经典机制那样填充到各处的静电电位。量子力学允许原子中的电子在播种事件中碰撞,引入降低排斥能的时空机制;而实际的成功计算化学方法包括与这些稳定机制的平均近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号