首页> 外文期刊>Eurasip Journal on Wireless Communications and Networking >An SDR implementation of WiFi receiver for mitigating multiple co-channel ZigBee interferers
【24h】

An SDR implementation of WiFi receiver for mitigating multiple co-channel ZigBee interferers

机译:WiFi接收器的SDR实施,用于减轻多个Co-Channel ZigBee干扰

获取原文
           

摘要

Abstract Machine-to-machine (M2M) communication is one of the vertical sectors that will benefit from 5G communication systems, but today, these systems are still dominated by technologies such as ZigBee and WiFi. An M2M scenario will experience dense deployment of ZigBee and WiFi nodes in order to route the data from one end to the other. In the 2.4 GHz industrial, scientific, and medical (ISM) band, both of the technologies perform co-channel overlapped operation and hence face severe cross technology co-channel interference (CCI). In contrast to cellular systems, which solve the CCI by centralized coordination through the base station, addressing CCI in the ISM band is non-trivial due to heterogeneous wireless technologies and the lack of centralized coordination. In this work, we first present interference mitigating receiver architectures for OFDM-based WiFi using single and multiple antennas. Our single antenna work is based on the localized estimation of excess noise caused by single and multiple co-channel narrowband interferers and scaling the log-likelihood ratios (LLRs) of the affected WiFi subcarriers. The simulation shows our method achieves a significant gain in SNR compared to the conventional method for a given packet error rate (PER) criterion. Next, we discuss maximal ratio combiner with LLR scaling (MLSC), which is a multi-antenna extension to our previous work. The simulation shows MLSC achieves diversity gain apart from the gain in SNR. Further, we propose soft-bit maximal ratio combiner with LLR scaling (SB-MLSC). SB-MLSC is an easy to implement version of MLSC. However, diversity combining in SB-MLSC is performed by combining the LLRs. Nonetheless, simulations show equivalence in performance by SB-MLSC and MLSC. Finally, as a significant part of this work, we implemented all our methods using a software-defined radio (SDR) and performed over-the-air (OTA) testing in the 2.4-GHz ISM band using standard WiFi and ZigBee frames. Results of OTA tests fall in complete agreement with our simulations indicating the practical applicability of our methods. Our methods apply to all the standards and related radio transmission techniques which are based on OFDM and face narrowband co-channel interference. Additionally, since our work focuses only on receiver side modifications, they can be integrated with the existing infrastructure with minimal modifications.
机译:摘要机器到机器(M2M)通信是将受益于5G通信系统的垂直部门之一,但今天,这些系统仍然由ZigBee和Wifi等技术主导。 M2M场景将体验ZigBee和WiFi节点的密集部署,以便将数据从一端路由到另一端。在2.4 GHz工业,科学和医疗(ISM)乐队中,这两种技术都执行共同通道重叠的操作,因此面临严重的交叉技术共同信道干扰(CCI)。与通过基站通过集中协调解决CCI的蜂窝系统形成对比,由于异质无线技术和缺乏集中协调,在ISM频段中寻址ISM频段中的CCI是非微不足道的。在这项工作中,首先使用单个天线为基于OFDM的WiFi提供干扰减轻接收器架构。我们的单个天线工作基于由单一和多个同信N窄带干扰引起的超噪声的本地化估计,并扩展受影响的WiFi子载波的日志似然比(LLR)。仿真显示我们的方法与给定分组错误率(PER)标准的传统方法相比,SNR的显着增益。接下来,我们讨论具有LLR缩放(MLSC)的最大比率组合器,这是我们以前的工作的多天线扩展。模拟显示MLSC除了SNR中的增益之外实现分集增益。此外,我们提出了具有LLR缩放(SB-MLSC)的软比特最大比组合器。 SB-MLSC是一种易于实现的MLSC版本。然而,通过组合LLRS来执行SB-MLSC中的多样性组合。尽管如此,模拟显示SB-MLSC和MLSC的性能等效。最后,作为这项工作的重要部分,我们使用软件定义的无线电(SDR)实施了所有方法,并使用标准WiFi和ZigBee帧执行2.4-GHz ISM频段中的空中(OTA)测试。 OTA测试的结果与我们的模拟完全一致,表明我们的方法的实际适用性。我们的方法适用于所有基于OFDM和面部窄带共信道干扰的所有标准和相关无线电传输技术。此外,由于我们的工作仅关注接收器侧修改,因此它们可以与现有的基础架构集成,以最小的修改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号