首页> 外文期刊>Earth System Science Data >DSCOVR/EPIC-derived global hourly and daily downward shortwave and photosynthetically active radiation data at 0.1°?×?0.1° resolution
【24h】

DSCOVR/EPIC-derived global hourly and daily downward shortwave and photosynthetically active radiation data at 0.1°?×?0.1° resolution

机译:DSCOVR / EPIC衍生的全球每小时和每日向下的短波和光合作用辐射数据0.1°?×0.1°分辨率

获取原文
       

摘要

Downward shortwave radiation (SW) and photosynthetically active radiation (PAR) play crucial roles in Earth system dynamics. Spaceborne remote sensing techniques provide a unique means for mapping accurate spatiotemporally continuous SW–PAR, globally. However, any individual polar-orbiting or geostationary satellite cannot satisfy the desired high temporal resolution (sub-daily) and global coverage simultaneously, while integrating and fusing multisource data from complementary satellites/sensors is challenging because of co-registration, intercalibration, near real-time data delivery and the effects of discrepancies in orbital geometry. The Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR), launched in February?2015, offers an unprecedented possibility to bridge the gap between high temporal resolution and global coverage and characterize the diurnal cycles of SW–PAR globally. In this study, we adopted a suite of well-validated data-driven machine-learning models to generate the first global land products of SW–PAR, from June?2015 to June?2019, based on DSCOVR/EPIC data. The derived products have high temporal resolution (hourly) and medium spatial resolution (0.1°×0.1°), and they include estimates of the direct and diffuse components of SW–PAR. We used independently widely distributed ground station data from the Baseline Surface Radiation Network (BSRN), the Surface Radiation Budget Network (SURFRAD), NOAA's Global Monitoring Division and the U.S. Department of Energy's Atmospheric System Research (ASR) program to evaluate the performance of our products, and we further analyzed and compared the spatiotemporal characteristics of the derived products with the benchmarking Clouds and the Earth's Radiant Energy System Synoptic (CERES) data. We found both the hourly and daily products to be consistent with ground-based observations (e.g., hourly and daily total SWs have low biases of ?3.96 and ?0.71 W m?2 and root-mean-square errors (RMSEs) of 103.50 and 35.40 W m?2, respectively). The developed products capture the complex spatiotemporal patterns well and accurately track substantial diurnal, monthly, and seasonal variations in SW–PAR when compared to CERES data. They provide a reliable and valuable alternative for solar photovoltaic applications worldwide and can be used to improve our understanding of the diurnal and seasonal variabilities of the terrestrial water, carbon and energy fluxes at various spatial scales. The products are freely available at https://doi.org/10.25584/1595069 (Hao et al., 2020).
机译:向下的短波辐射(SW)和光合作用辐射(PAR)在地球系统动态中起重要作用。太空载遥感技术提供了一种独特的手段,用于在全球范围内绘制准确的时尚连续的SW-PAR。但是,任何单个奥伯特或地球静止卫星都不能同时满足所需的高时间分辨率(次日)和全球覆盖,同时由于共同登记,闭路,近乎真实地,整合和融合来自互补卫星/传感器的多源数据是具有挑战性的 - 轨道几何中的数据传递与差异的影响。船上的地球多色成像相机(EPIC)在2月份推出的深度空间气候观测所(DSCOVR)(DSCOVR),提供了前所未有的可能性,可以弥合高时分辨率和全球覆盖率之间的差距,并表征全球SW-律的昼夜周期。在这项研究中,我们采用了一套经过验证的良好的数据驱动的机器学习模型,以从6月到6月到6月的SW-PAR的第一款全球土地产品2019年,基于DSCOVR / EPIC数据。衍生的产品具有高的时间分辨率(每小时)和中等空间分辨率(0.1°×0.1°),它们包括SW-甲术的直接和漫射组分的估计。我们使用基线辐射网络(BSRN),表面辐射预算网络(SURFRAD),NOAA的全球监测司和美国能源部大气系统研究(ASR)计划的独立广泛分布的地面站数据,以评估我们的表现产品,并进一步分析并将衍生产品的时空特性与基准云和地球的辐射能量系统概要(CERES)数据进行了分析。我们发现每小时和日常产品与地面的观察结果一致(例如,每小时和每日总共总偏差有低偏差?3.96和?0.71 W m?2和103.50的根均方误差(RMSE)和35.40 W m?2,分别)。与CERES数据相比,开发产品捕获了复杂的时空模式,并准确地跟踪了SW-PAR的大量日落,每月和季节性变化。它们为全球太阳能光伏应用提供可靠而有价值的替代方案,可用于改善我们对各种空间尺度的地面水,碳和能量通量的昼夜季节性和季节性变形性的理解。产品可在HTTPS://doi.org/10.25584/1595069(Hao等,2020)上免费提供。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号