首页> 外文期刊>International Journal of Industrial Chemistry >Quantification of inherent energy resilience of process systems pertaining to a gas sweetening unit
【24h】

Quantification of inherent energy resilience of process systems pertaining to a gas sweetening unit

机译:燃气甜味装置有关的过程系统固有能量恢复的定量

获取原文
       

摘要

In contrast to physical failure of process systems, quantification of inherent system energy resilience has been carried out considering performance failure of process systems under this work. The inherent energy resilience for process systems can be conceptualized from the perspectives of material resilience (Guha, Environ Prog Sustain Energy, e13308, 2019). Correlations have been used to assess inherent energy resilience properties of constituent process systems pertaining to a gas sweetening unit (GSU) as a case study [1]. A steady state condition has been considered and system stress and system strain equations have been used to quantify the inherent system energy resilience [1]. It is assessed that absorber column and regenerator column systems under study possess inherent energy resilience of around 5% (absorber column) and 15% (regenerator column) with regard to variation in upstream feed sour gas flow rate beyond 100% design flow rate, i.e., 27,814?kg/h. It is also established that the lean-rich exchanger system under study possesses inherent energy resilience of around 10% with regard to variation in upstream feed sour gas flow rate beyond 100% design flow rate. Results also indicate that similar to a material, all the process systems under study (i.e., absorber, regenerator, lean-rich exchanger) of a gas sweetening unit (GSU) demonstrate inverse relationship of modulus of energy resilience (Ur) with modulus of elasticity ( E _(sys)) in all applicable operating variable deviation regimes. Computer simulation using a process simulator SIMULATION SCIENCES INC, Pro/II (Version 9.2) has been utilized for this study. Finally, one example is given regarding design procedure in relation to incorporation of 50% over capacity factor or inherent energy resiliency in the absorber column by augmentation of number of column trays.
机译:与过程系统的物理失败相比,考虑到这项工作下的过程系统的性能失败,已经进行了固有系统能量弹性的量化。过程系统的固有能量弹性可以从材料弹性的角度概念化(Guha,Environ Prog维持能源,E13308,2019)。已经使用相关性来评估与气体甜味单位(GSU)有关的构成过程系统的固有能量弹性特性作为案例研究[1]。已经考虑了稳态状态,并且已经使用系统应力和系统应变方程来量化固有的系统能量弹性[1]。评估其正在研究的吸收柱和再生柱柱系统具有约5%(吸收柱)和15%(再生塔)的固有能量弹性,关于上游进料酸气体流速超过100%设计流速,即,27,814?kg / h。还建立了贫血的交换系统,在上游饲料酸气体流速的变化范围内具有超过100%的设计流速的上游进料酸气体流速的固有能量恢复。结果还表明,类似于材料,燃气甜味单位(GSU)的研究中的所有过程系统(即,吸收剂,富含的浓度交换器)展示了能量弹性模量与弹性模量的逆关系(E _(SYS))中的所有适用的操作可变偏差制度。计算机仿真使用流程模拟器模拟SCIENSEC INC,PRO / II(版本9.2)已被用于本研究。最后,给出了一个例子,关于通过增强列托盘的吸收柱中的容量因数或固有能量弹性的50%掺入50%的设计过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号