...
首页> 外文期刊>Atmospheric Measurement Techniques >Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS
【24h】

Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

机译:快速,光学测量快速研究飞机的大气压,使用开放式TDLAS

获取原文

摘要

Because of the high travel speed, the complex flow dynamics around an aircraft, and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore, these CFD transfer models require a local experimental validation, which is rarely available. brbr In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realised with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for Hsub2/subO concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. brbr The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 to 800 hPa, and a water vapour concentration range of more than 3 orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements shows an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2 and 5.1% during in-flight operation on the HALO airplane. Under certain flight conditions we quantified, for the first time, stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the typically used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.
机译:由于行驶速度高,飞机周围的复杂流动动态以及流体动力学的复杂依赖性在众多空中参数上,很难在飞机机身的特定仪器位置获得精确的压力值。使用计算流体动力学(CFD)模型的复杂模拟可以理论上可以计算到另一个位置的“将”压力值“转移到另一个位置。然而,对于长途飞行模式,这个过程是不方便和繁琐的。此外,这些CFD转移模型需要局部实验验证,这很少可用。在本文中,我们描述了使用环境,大气水蒸气作为“传感器物种的飞机机身在飞机机身上的光谱白细胞中的光谱白细胞的综合方法。 “。通过HAI(湿度计用于大气调查)仪器实现了所提出的测量,用于通过无校准TDLA(可调谐二极管激光吸收光谱)为多相水检测。压力测定基于用于H 2 O浓度测量的原始数据,但是用不同的飞行后评估方法,因此可以在任何所需飞行轨道上以延迟的时间间隔进行。 光谱压力与飞行器的静态环境压力与飞机航空系统的静态环境压力和位于开放式路径段旁边的微机械压力传感器,压力范围为150至800 HPA ,水蒸气浓度范围超过3个数量级。微机械压力传感器测量和光谱压力测量之间的相关性显示出与线性度仅为0.14%的平均偏差和9.5 HPA的小偏移。对于光谱压力评估,我们在晕圈飞机上飞行期间在实验室条件下获得的测量不确定因素在3.2和5.1%。在我们定量的某些飞行条件下,在航空传感器和在海中集成的光学和机械压力传感器之间的第一次停止诱导,动态压力偏差高达30%(在200hPa时)。与典型使用的航空压力的这种严重的局部压力偏差对于考虑在这种快速飞行平台上的其他空中传感器作为光环飞机来说是重要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号