...
首页> 外文期刊>Applied Sciences >Algorithmically Optimized Hemispherical Dome as a Secondary Optical Element for the Fresnel Lens Solar Concentrator
【24h】

Algorithmically Optimized Hemispherical Dome as a Secondary Optical Element for the Fresnel Lens Solar Concentrator

机译:作为菲涅耳透镜太阳能集中器的次光学元件算法优化的半球形圆顶

获取原文
           

摘要

The significance of this work lies in the development of a novel code-based, detailed, and deterministic geometrical approach that couples the optimization of the Fresnel lens primary optical element (POE) and the dome-shaped secondary optical element (SOE). The objective was to maximize the concentration acceptance product (CAP), while using the minimum SOE and receiver geometry at a given f-number and incidence angle (also referred to as the tracking error angle). The laws of polychromatic light refraction along with trigonometry and spherical geometry were utilized to optimize the POE grooves, SOE radius, receiver size, and SOE–receiver spacing. Two literature case studies were analyzed to verify this work’s optimization, both with a spot Fresnel lens POE and a spherical dome SOE. Case 1 had a 625 cm 2 POE at an f-number of 1.5, and Case 2 had a 314.2 cm 2 POE at an f-number of 1.34. The equivalent POE designed by this work, with optimized SOE radiuses of 13.6 and 11.4 mm, respectively, enhanced the CAP value of Case 1 by 52% to 0.426 and that of Case 2 by 32.4% to 0.45. The SOE’s analytical optimization of Case 1 was checked by a simulated comparative analysis to ensure the validity of the results. Fine-tuning this design for thermal applications and concentrated photovoltaics is also discussed in this paper. The algorithm can be further improved for more optimization parameters and other SOE shapes.
机译:这项工作的重要性在于开发一种基于代码的,详细的和确定的几何方法,其耦合菲涅耳透镜主光学元件(POE)和圆顶形二次光学元件(SOE)的优化。目的是最大化浓度验收产品(盖子),同时在给定的F数和入射角处使用最小SOE和接收器几何体(也称为跟踪误差角)。利用多色光折射的规律以及三角形和球形几何形状来优化PoE槽,SOE半径,接收器尺寸和SOE接收机间距。分析了两项文献案例研究以验证这项工作的优化,无论是带点菲涅耳透镜PoE和球形圆顶SOE。案例1在F数为1.5的F数具有625厘米2 PoE,并且案例2具有314.2cm 2 PoE,在F数为1.34。通过这项工作设计的等效PoE,分别优化的SOE半径为13.6和11.4mm,将壳体1的盖子值提高52%至0.426,案例2的盖子值32.4%至0.45。通过模拟的比较分析检查了SOE的分析优化,以确保结果的有效性。本文还讨论了微调热应用和集中光伏的设计。对于更多优化参数和其他SOE形状,可以进一步提高该算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号