首页> 外文期刊>ACS Omega >Controlled Size Growth of Thermally Stable Organometallic Halide Perovskite Microrods: Synergistic Effect of Dual-Doping, Lattice Strain Engineering, Antisolvent Crystallization, and Band Gap Tuning Properties
【24h】

Controlled Size Growth of Thermally Stable Organometallic Halide Perovskite Microrods: Synergistic Effect of Dual-Doping, Lattice Strain Engineering, Antisolvent Crystallization, and Band Gap Tuning Properties

机译:控制尺寸生长的热稳定有机金属卤化物钙钛矿微型器:双掺杂,晶格应变工程,防溶剂结晶和带隙调谐性能的协同作用

获取原文
           

摘要

Organometallic halide perovskites, as the light-harvesting material, have been extensively used for cost-effective energy production in high-performance perovskite solar cells, despite their poor stability in the ambient atmosphere. In this work, methylammonium lead iodide, CH_(3)NH_(3)PbI_(3), perovskite was successfully doped with KMnO_(4) using antisolvent crystallization to develop micrometer-length perovskite microrods. Thus, the obtained KMnO_(4)-doped perovskite microrods have exhibited sharp, narrow, and red-shifted photoluminescence band, as well as high lattice strain with improved thermal stability compared to undoped CH_(3)NH_(3)PbI_(3). During the synthesis of the KMnO_(4)-doped perovskite microrods, a low boiling point solvent, anhydrous chloroform, was employed as an antisolvent to facilitate the emergence of controlled-size perovskite microrods. The as-synthesized KMnO_(4)-doped perovskite microrods retained the pristine perovskite crystalline phases and lowered energy band gap (~1.57 eV) because of improved light absorption and narrow fluorescence emission bands (fwhm < 10 nm) with improved lattice strain (~4.42 × 10~(–5)), Goldsmith tolerance factor (~0.89), and high dislocation density (~5.82 × 10~(–4)), as estimated by Williamson–Hall plots. Thus, the obtained results might enhance the optical properties with reduced energy band gap and high thermal stability of doped-perovskite nanomaterials in ambient air for diverse optoelectronic applications. This study paves the way for new insights into chemical doping and interaction possibilities in methylamine-based perovskite materials with various metal dopants for further applications.
机译:作为光收获材料的有机金属卤化物钙钛矿已广泛用于高性能钙钛矿太阳能电池中的经济高效的能源生产,尽管环境大气中的稳定性差。在这项工作中,甲基庚烷碘化物,CH_(3)NH_(3)PBI_(3),使用抗溶剂结晶成功掺杂KMNO_(4),以开发微米长度钙钛矿微型码。因此,获得的KMNO_(4) - 掺杂的钙钛矿微火焰已经表现出尖锐,窄和红色的光致发光带,以及与未掺杂的CH_(3)NH_(3)PBI_(3)相比具有改善的热稳定性的高晶格菌株。 。在KMNO_(4)的合成过程中,使用低沸点溶剂,无水氯仿,用作促进剂以促进受控钙钛矿微火毒的出现。作为合成的KMNO_(4) - 掺杂的钙钛矿MICRORODS保留了原始的钙钛矿结晶相,降低了能带隙(〜1.57eV),因为具有改善的晶格菌株(〜)改善了光吸收和窄荧光发射带(FWHM <10nm)(〜 4.42×10〜(-5)),金匠公差因数(〜0.89),高分位密度(〜5.82×10〜( - 4)),估计是Williamson-Hall Plots。因此,所得结果可能增强具有能带隙的光学性质,其在环境空气中具有降低的能带隙和高热稳定性,用于各种光电应用。本研究铺平了新的洞察化学掺杂和基于甲胺的钙钛矿材料中的相互作用的方式,具有各种金属掺杂剂,用于进一步应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号