首页> 外文期刊>ACS Omega >Synergy between Interconnected Porous Carbon-Sulfur Cathode and Metallic MgB2 Interlayer as a Lithium Polysulfide Immobilizer for High-Performance Lithium-Sulfur Batteries
【24h】

Synergy between Interconnected Porous Carbon-Sulfur Cathode and Metallic MgB2 Interlayer as a Lithium Polysulfide Immobilizer for High-Performance Lithium-Sulfur Batteries

机译:互连多孔碳硫阴极与金属MGB2中间层之间的协同作用,作为高性能锂 - 硫磺电池的多硫化锂固定剂

获取原文
           

摘要

Lithium-sulfur (Li-S) batteries are the potential candidates for developing high-energy-density electric vehicles. However, poor electrical conductivity of sulfur/discharged products, low active material utilization, shuttle mechanism, and poor cycle life remain the major challenges for the development of Li-S batteries. Herein, we report the nitrogen-doped highly porous carbon (NC) with interconnected pores as the sulfur host (NC-S), which is synthesized by a facile one-step process without using any template and activation agents. The highly interconnected porous structure of NC can accommodate a high amount of sulfur loading and provide space for sulfur volume expansion during redox reactions. Besides, to mitigate the lithium polysulfide dissolution and shuttle mechanism, metallic and polar magnesium diboride (MgB_(2)) is used as an interlayer. Consequently, the NC-S/MgB_(2) cathode delivers higher specific capacity, rate capability, and excellent cyclic stability than the NC-S cathode and bulk sulfur cathode with MgB_(2) interlayer. The lithium polysulfide (LPS) adsorption test shows that MgB_(2) has strong chemisorption toward lithium polysulfides, which can inhibit the dissolution of LPS into the electrolyte and minimizes the shuttle effect. The dynamic electrochemical impedance spectroscopy analysis investigates the electrochemical reaction kinetics of the NC-S/MgB_(2) cathode during the charging and discharging processes. Overall, this work demonstrates that the synergy between the nitrogen-doped porous carbon-sulfur host and polar metallic MgB_(2) improves the performance of the Li-S battery, which is beneficial for the development of high-energy-density batteries for the future.
机译:锂 - 硫(LI-S)电池是开发高能密度电动车辆的潜在候选者。然而,硫/放电产品的电导率低,活性材料利用率低,梭机械较差,循环寿命差仍然是LI-S电池开发的主要挑战。在此,我们将氮气掺杂高度多孔碳(NC)与互连的孔报告为硫宿主(NC-S),其在不使用任何模板和活化剂的情况下通过容易的一步法合成。 NC的高度相互连接的多孔结构可以适应大量的硫载荷,并在氧化还原反应期间提供硫体积膨胀的空间。此外,为了减轻多硫化锂溶解和梭机构,使用金属和极性二硼(MgB_(2))作为中间层。因此,NC-S / MGB_(2)阴极可提供比NC-S阴极和具有MGB_(2)中间层的NC-S阴极和块状硫阴极的优异的循环稳定性。锂多硫化物(LPS)吸附试验表明,MgB_(2)对锂多硫化物具有强大的化学吸附,其可以抑制LPS溶解到电解质中并最大限度地减少穿梭效果。动态电化学阻抗光谱分析分析研究了在充电和放电过程中NC-S / MGB_(2)阴极的电化学反应动力学。总体而言,这项工作表明,氮掺杂多孔碳 - 硫宿主和极性金属MGB_(2)之间的协同作用可提高LI-S电池的性能,这有利于开发高能密度电池未来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号