...
首页> 外文期刊>ACS Omega >Ultratoughening of Biobased Polyamide 410
【24h】

Ultratoughening of Biobased Polyamide 410

机译:Biobased Polyamide 410的超胶

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The microstructural, thermomechanical, and quasistatic mechanical properties of biobased polyamide 410 (PA410)/poly(octane-co -ethylene)-g -maleic anhydride (POE-g -MA) blends with the impact toughener in the composition range of 0–20 wt % have been investigated, with an aim to overcome the poor notch and strain sensitivity of PA410. The crystallinity of the blends obtained from enthalpic measurements and initial degradation temperature indicating thermal stability remained mostly unaffected. A remarkably substantial increase, i.e., ~15-fold enhancement, in the impact strength of the PA410/POE-g -MA blends leading to ultratoughening of PA410 accompanied by a significant increase in tensile strain at breaking is achieved though the elastic modulus (E ) and yield strength (σ) decreased with impact modifier content. Thermomechanical analysis revealed a broadening in the loss tangent peak in the temperature range of ~?50 to ?30 °C corresponding to the POE phase, whereas the loss tangent peak corresponding to the PA410 phase stayed unaffected. Conventional theoretical models such as the rule of mixture and foam model were used to analyze the micromechanics of low-strain (<1%) mechanical response (E ), and Nikolais–Narkis model and Isahi–Cohen models, for high-strain (>2%) mechanical response (σ). The interdependence of impact toughness, ductility ratio, and domain size of the dispersed rubber phase in the PA410/POE-g -MA blends could successfully be established vis-à-vis the mechanistic role of interparticle distance. Scanning electron microscopy showing domain coalescence of the soft elastomeric POE phase thus reiterated the pivotal role of interdomain distance and domain size in influencing the toughening mechanism of PA410/POE-g -MA blends. The qualitative phase distribution attributes based on atomic force microscopy remained in sync with quantitative parameters, such as domain size, hence reaffirming the mechanism behind ultratoughening of PA410 by POE.
机译:生物化聚酰胺410(PA410)/聚(辛烷 - Co-乙烯) - G-Mmaleic酸酐(PoE- G -MA)的混合物与抗冲击相混合的微观结构,热机械和Quasistatic机械性能已经研究了0-20wt%的组成范围内的增韧剂,目的是克服PA410的差的凹口和菌株敏感性。由焓测量和初始降解温度获得的共混物的结晶度仍然不受影响。在PA410 / PoE- G -MA共混物的冲击强度下,伴随PA410的超时伴随着断裂伴随着张力菌株的显着增加,实现了显着的大幅增加,即〜15倍的增强,即伴随着PA410的超长菌株的显着增加模量( e)和屈服强度(σ)随抗冲改性剂含量降低。热机械分析显示,对应于PoE阶段的温度范围内的损耗切线峰的凸起变宽,而对应于PA410相位的损耗切线峰保持不受影响。诸如混合物和泡沫模型规则的常规理论模型用于分析低菌株(<1%)机械响应( 2%)机械响应(σ)。 PA410 / POE- G -MA共混物中分散橡胶相的冲击韧性,延展性比和畴尺寸的相互依存性可以成功地建立颗粒间距离的机械作用。因此,扫描电子显微镜显示软弹性浦阶段的域聚结,因此重申了跨域距离和域尺寸在影响PA410 / POE- G -MA混合物的增韧机理方面的枢转作用。基于原子力显微镜的定性相位分布属性与定量参数相同步,例如域大小,因此通过PoE重新重新确定PA410超时的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号