首页> 外文期刊>ACS Omega >Nanoscale Photoinduced Charge Transfer with Individual Quantum Dots: Tunability through Synthesis, Interface Design, and Interaction with Charge Traps
【24h】

Nanoscale Photoinduced Charge Transfer with Individual Quantum Dots: Tunability through Synthesis, Interface Design, and Interaction with Charge Traps

机译:纳米级光诱导电荷转移与单个量子点:通过合成,界面设计的可调性,以及与充电陷阱的互动

获取原文
获取外文期刊封面目录资料

摘要

Semiconducting colloidal quantum dots (QDs) provide an excellent platform for nanoscale charge-transfer studies. Because of their size-dependent optoelectronic properties, which can be tuned via chemical synthesis and of their versatility in surface ligand exchange, QDs can be coupled with various types of acceptors to create hybrids with controlled type (electron or hole), direction, and rate of charge flow, depending on the foreseen application, either solar harvesting, light emitting, or biosensing. This perspective highlights several examples of QD-based hybrids with controllable (tunable) rate of charge transfer obtained by various approaches, including by changing the QD core size and shell thickness by colloidal synthesis, by the insertion of molecular linkers or dielectric spacers between donor and acceptor components. We also show that subjecting QDs to external factors such as electric fields and alternate optical excitation energy is another approach to bias the internal charge transfer between charges photogenerated in the QD core and QD’s surface charge traps. The perspective also provides the reader with various examples of how single nanoparticle spectroscopic studies can help in understanding and quantifying nanoscale charge transfer with QDs.
机译:半导体胶体量子点(QDS)为纳米级电荷转移研究提供了优异的平台。由于其依赖于依赖的光电性能,可以通过化学合成和表面配体交换中的通用性,QDS可以与各种类型的受护者偶联,以产生具有受控类型(电子或孔),方向和速率的混合动力车电荷流量,取决于预见的应用,太阳能收获,发光或生物传感。该透视突出了通过各种方法获得的可控(可调)电荷转移速率的QD基混合动力车的几个例子,包括通过胶体合成改变QD芯尺寸和壳体厚度,通过插入供体之间的分子接头或介电垫片受体组件。我们还表明,使QDS对电场和替代光学激发能量等外部因素进行了另一种方法,是偏置在QD核心和QD表面电荷陷阱中光发光的电荷之间的内部电荷转移的方法。该角度还提供了读者,其中单个纳米粒子光谱研究如何有助于理解和定量QDS的纳米级电荷转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号