...
首页> 外文期刊>Climate of the past >Modeling the evolution of pulse-like perturbations in atmospheric carbon and carbon isotopes: the role of weathering–sedimentation imbalances
【24h】

Modeling the evolution of pulse-like perturbations in atmospheric carbon and carbon isotopes: the role of weathering–sedimentation imbalances

机译:在大气碳和碳同位素中造型脉冲样扰动的演变:耐候性沉积失衡的作用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Measurements of carbon isotope variations in climate archives and isotope-enabled climate modeling advance the understanding of the carbon cycle. Perturbations in atmospheric CO2 and in its isotopic ratios (δ13C, Δ14C) are removed by different processes acting on different timescales. We investigate these differences on timescales of up to 100 000?years in pulse-release experiments with the Bern3D-LPX Earth system model of intermediate complexity and by analytical solutions from a box model. On timescales from years to many centuries, the atmospheric perturbations in CO2 and δ13CO2 are reduced by air–sea gas exchange, physical transport from the surface to the deep ocean, and by the land biosphere. Isotopic perturbations are initially removed much faster from the atmosphere than perturbations in CO2 as explained by aquatic carbonate chemistry. On multimillennial timescales, the CO2 perturbation is removed by carbonate compensation and silicate rock weathering. In contrast, the δ13C perturbation is removed by the relentless flux of organic and calcium carbonate particles buried in sediments. The associated removal rate is significantly modified by spatial δ13C gradients within the ocean, influencing the isotopic perturbation of the burial flux. Space-time variations in ocean δ13C perturbations are captured by principal components and empirical orthogonal functions. Analytical impulse response functions for atmospheric CO2 and δ13CO2 are provided. Results suggest that changes in terrestrial carbon storage were not the sole cause for the abrupt, centennial-scale CO2 and δ13CO2 variations recorded in ice during Heinrich stadials HS1 and HS4, though model and data uncertainties prevent a firm conclusion. The δ13C offset between the Penultimate Glacial Maximum and Last Glacial Maximum reconstructed for the ocean and atmosphere is most likely caused by imbalances between weathering, volcanism, and burial fluxes. Our study highlights the importance of isotopic fluxes connected to weathering–sedimentation imbalances, which so far have been often neglected on glacial–interglacial timescales.
机译:气候档案中碳同位素变化的测量和使同位素的气候建模推进了对碳循环的理解。通过在不同时间尺度上作用的不同方法去除在大气中的扰动和其同位素比例(Δ13C,Δ14C)。我们研究了在脉冲释放实验中的时间尺寸高达100 000的差异,从箱体模型中由中间复杂性的伯尔诺3D-LPX地球系统模型和分析解决方案进行脉冲释放实验。在多年到多个世纪以来的时间尺度上,CO2和δ13Co2的大气扰动由海运气体交换,从表面到深海的物理运输,以及土地生物圈。如水生碳酸盐化学所解释的那样,从大气中最初从大气中取出同位素扰动。在多百年时间尺寸上,通过碳酸盐补偿和硅酸盐岩体去除CO2扰动。相反,通过在沉积物中掩埋的有机和碳酸钙颗粒的无情通量去除δ13C扰动。通过海洋内的空间δ13C梯度显着改变相关的去除率,影响埋管助焊剂的同位素扰动。海洋δ13C扰动的时空变化由主成分和经验正交功能捕获。提供了大气CO2和δ13CO2的分析脉冲响应函数。结果表明,在Heinrich Stadials HS1和HS4期间,陆地碳储存的变化不是突然,百年级CO2和δ13CO2变化的唯一原因,尽管模型和数据不确定性阻止了坚定的结论。在海洋和气氛中重建的倒数第二次冰川最大和最后冰川最大值之间的Δ13C最有可能由风化,火山中和墓穴之间的不平衡引起。我们的研究突出了同位素通量与风化沉降失衡的重要性,到目前为止在冰川间间尺度上常常被忽视。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号