...
首页> 外文期刊>Chemical science >Electrochemical biomass valorization on gold-metal oxide nanoscale heterojunctions enables investigation of both catalyst and reaction dynamics with operando surface-enhanced Raman spectroscopy
【24h】

Electrochemical biomass valorization on gold-metal oxide nanoscale heterojunctions enables investigation of both catalyst and reaction dynamics with operando surface-enhanced Raman spectroscopy

机译:金属氧化物纳米级异质结上的电化学生物质载物能够通过Operando表面增强的拉曼光谱进行催化剂和反应动力学的研究

获取原文
           

摘要

The electrochemical oxidation of biomass platforms such as 5-hydroxymethylfurfural (HMF) to value-added chemicals is an emerging clean energy technology. However, mechanistic knowledge of this reaction in an electrochemical context is still lacking and operando studies are even more rare. In this work, we utilize core–shell gold-metal oxide nanostructures which enable operando surface-enhanced Raman spectroelectrochemical studies to simultaneously visualize catalyst material transformation and surface reaction intermediates under an applied voltage. As a case study, we show how the transformation of NiOOH from ~1–2 nm amorphous Ni layers facilitates the onset of HMF oxidation to 2,5-furandicarboxylic acid (FDCA), which is attained with 99% faradaic efficiency in 1 M KOH. In contrast to the case in 1 M KOH, NiOOH formation is suppressed, and consequently HMF oxidation is sluggish in 10 mM KOH, even at highly oxidizing potentials. Operando Raman experiments elucidate how surface adsorption and interaction dictates product selectivity and how the surface intermediates evolve with applied potential. We further extend our methodology to investigate NiFe, Co, Fe, and CoFe catalysts and demonstrate that high water oxidation activity is not necessarily correlated with excellent HMF oxidation performance and highlight catalytic factors important for this reaction such as reactant–surface interactions and the catalysts' physical and electronic structure. The insights extracted are expected to pave the way for a deepened understanding of a wide array of electrochemical systems such as for organic transformations and CO _(2) fixation.
机译:生物质平台的电化学氧化如5-羟甲基糠(HMF)到增值化学品是一种新兴的清洁能源技术。然而,在电化学背景下对这种反应的机械知识仍然缺乏,并且Operando研究更加罕见。在这项工作中,我们利用核壳金金属氧化物纳米结构,其使Operando表面增强的拉曼光谱电化学研究能够在施加的电压下同时可视化催化剂材料转化和表面反应中间体。作为一个案例研究,我们展示了NiOOH的转化从〜1-2nm非晶Ni层的转化有利于HMF氧化至2,5-呋喃羧酸(FDCA)的发作,其在1M KOH中以99%的野蛮效率获得99% 。与1M KOH中的情况相比,抑制了NOIOOH形成,因此即使在高度氧化电位下,也可以在10mM KOH中慢慢氧化。 Operando拉曼实验阐明了表面吸附和相互作用的方式决定了产品选择性以及表面中间体如何随着施加的电位发展。我们进一步扩大了我们的方法,以研究NiFe,Co,Fe和Cofe催化剂,并表明高水氧化活性不一定与优异的HMF氧化性能相关,并且突出对该反应的催化因子如反应物 - 表面相互作用和催化剂相互作用。物理和电子结构。提取的洞察力预计将为深化阵列电化学系统铺平,例如用于有机转化和CO _(2)固定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号