首页> 外文期刊>Chemical science >A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics
【24h】

A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics

机译:非蛋白质氨基酸掺入糖肽抗生素中的证明读取机制

获取原文
获取外文期刊封面目录资料

摘要

Non-ribosomal peptide biosynthesis produces highly diverse natural products through a complex cascade of enzymatic reactions that together function with high selectivity to produce bioactive peptides. The modification of non-ribosomal peptide synthetase (NRPS)-bound amino acids can introduce significant structural diversity into these peptides and has exciting potential for biosynthetic redesign. However, the control mechanisms ensuring selective modification of specific residues during NRPS biosynthesis have previously been unclear. Here, we have characterised the incorporation of the non-proteinogenic amino acid 3-chloro-β-hydroxytyrosine during glycopeptide antibiotic (GPA) biosynthesis. Our results demonstrate that the modification of this residue by trans -acting enzymes is controlled by the selectivity of the upstream condensation domain responsible for peptide synthesis. A proofreading thioesterase works together with this process to ensure that effective peptide biosynthesis proceeds even when the selectivity of key amino acid activation domains within the NRPS is low. Furthermore, the exchange of condensation domains with altered amino acid specificities allows the modification of such residues within NRPS biosynthesis to be controlled, which will doubtless prove important for reengineering of these assembly lines. Taken together, our results indicate the importance of the complex interplay of NRPS domains and trans -acting enzymes to ensure effective GPA biosynthesis, and in doing so reveals a process that is mechanistically comparable to the hydrolytic proofreading function of tRNA synthetases in ribosomal protein synthesis.
机译:非核糖体肽生物合成通过复杂的酶促反应产生高度多样化的天然产物,该酶促反应在一起具有高选择性以产生生物活性肽的功能。非核糖体肽合成酶(NRPS) - 氨基酸的改性可以引入这些肽的显着结构多样性,并且具有生物合成重新设计的激动潜力。然而,在NRPS生物合成期间确保特定残留物的选择性修饰的控制机制先前尚不清楚。这里,我们表征在糖肽抗生素(GPA)生物合成中掺入非蛋白质氨基酸3-氯-β-羟基羟基喹啉。我们的结果表明,通过递转酶改变该残余物通过负责肽合成的上游缩合结构域的选择性来控制。校对硫酯酶与该过程一起工作,以确保即使当NRP内的关键氨基酸激活域的选择性低时,也要确保有效的肽生物合成。此外,具有改变的氨基酸特异性的冷凝结构域的交换允许在待控制NRPS生物合成中的这种残留物进行修饰,这对于重新造成这些装配线来说,这将无疑是重要的。我们的结果表明,NRPS结构域和递转剂酶复杂相互作用的重要性,以确保有效的GPA生物合成,并且在这样做的过程中揭示了与核糖体蛋白合成中的TRNA合成酶的水解校对功能合理地相当的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号