...
首页> 外文期刊>BMC Plant Biology >Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars
【24h】

Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars

机译:五个对比高地奎奴亚藜品种耐盐性的比较生理学和生化机制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Chenopodium quinoa Willd., a halophytic crop, shows great variability among different genotypes in response to salt. To investigate the salinity tolerance mechanisms, five contrasting quinoa cultivars belonging to highland ecotype were compared for their seed germination (under 0, 100 and 400?mM NaCl) and seedling’s responses under five salinity levels (0, 100, 200, 300 and 400?mM NaCl). Substantial variations were found in plant size (biomass) and overall salinity tolerance (plant biomass in salt treatment as % of control) among the different quinoa cultivars. Plant salinity tolerance was negatively associated with plant size, especially at lower salinity levels (?300?mM NaCl), but salt tolerance between seed germination and seedling growth was not closely correlated. Except for shoot/root ratio, all measured plant traits responded to salt in a genotype-specific way. Salt stress resulted in decreased plant height, leaf area, root length, and root/shoot ratio in each cultivar. With increasing salinity levels, leaf superoxide dismutase (SOD) activity and lipid peroxidation generally increased, but catalase (CAT) and peroxidase (POD) activities showed non-linear patterns. Organic solutes (soluble sugar, proline and protein) accumulated in leaves, whereas inorganic ion (Na+ and K+) increased but K+/Na+ decreased in both leaves and roots. Across different salinity levels and cultivars, without close relationships with antioxidant enzyme activities (SOD, POD, or CAT), salinity tolerance was significantly negatively correlated with organic solute and malondialdehyde contents in leaves and inorganic ion contents in leaves or roots (except for root K+ content), but positively correlated with K+/Na+ ratio in leaves or roots. Our results indicate that leaf osmoregulation, K+ retention, Na+ exclusion, and ion homeostasis are the main physiological mechanisms conferring salinity tolerance of these cultivars, rather than the regulations of leaf antioxidative ability. As an index of salinity tolerance, K+/Na+ ratio in leaves or roots can be used for the selective breeding of highland quinoa cultivars.
机译:Chenopodium Quinoa Willd。嗜毒作物,含有盐的不同基因型之间表现出很大的变化。为了研究盐度耐受机制,将属于高地生态型的五种对比的藜麦品种与其种子萌发(0,100和400毫米NaCl)和幼苗在五个盐度水平下的反应(0,100,200,300和400? mm nacl)。在不同的藜麦品种中,在植物大小(生物质)和整体盐度耐受(盐处理中的植物生物质的总盐度耐受性(植物生物质)中发现了大量变化。植物盐度耐受性与植物尺寸负相关,特别是在较低的盐度水平(<300?mm NaCl)下,但种子萌发和幼苗生长之间的耐盐性并不密切相关。除芽/根部比外,所有测量的植物特征以特异性型方式应对盐。盐胁迫导致每种品种的植物高度,叶面积,根长度和根/芽比减少。随着盐度水平的增加,叶超氧化物歧化酶(SOD)活性和脂质过氧化通常增加,但过氧化氢酶(猫)和过氧化物酶(POD)的活性显示出非线性图案。在叶中累积的有机溶质(可溶性糖,脯氨酸和蛋白质),而无机离子(Na +和K +)增加但叶片和根部的k + / na +降低。在不同的盐度水平和品种上,没有与抗氧化酶活性(SOD,POD或CAT)密切相关的,盐度耐受性与叶子或根的无机离子含量中的有机溶质和丙醛含量显着呈负相关(除了根k +除外含量),但与叶子或根的K + / Na +比正相关。我们的结果表明,叶Osmoregulation,K +保留,Na +排除和离子稳态是赋予这些品种盐度耐受性的主要生理机制,而不是叶抗氧化能力的规定。作为盐度耐受性指数,叶片或根中的K + / Na +比可用于高地奎奴亚藜品种的选择性育种。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号