首页> 外文期刊>Biotechnology & Biotechnological Equipment >Agrobacterium rhizogenes transformed soybeans with AtPAP18 gene show enhanced phosphorus uptake and biomass production
【24h】

Agrobacterium rhizogenes transformed soybeans with AtPAP18 gene show enhanced phosphorus uptake and biomass production

机译:Agrobacterium Rhizogenes与ATPAP18基因转化大豆,显示出增强的磷吸收和生物质生产

获取原文
           

摘要

Low-phosphorus stress is a challenging factor in limiting plant development. Soybean is cultivated in soils often low in phosphorus. However, on average 65% of total P is in the form of organic phosphates, which are unavailable to plants unless hydrolyzed to release inorganic phosphate. One approach for enhancing crop P acquisition from organic P sources is boosting the activity of acid phosphatases (APases). This study seeks to understand the role of an Arabidopsis ( Arabidopsis thaliana ) purple APase gene ( AtPAP18 ) in soybean. Thus, the gene was isolated and a final vector ( AtPAP18 /pK7GWG2D) was built. Composite soybean plants were created using Agrobacterium rhizogenes -mediated transformation. A. rhizogenes K599 carrying the AtPAP18 /pK7GWG2D vector with egfp as a reporter gene was used for soybean hairy root transformation. Analysis of Egfp expression detected fluorescence signals in transgenic roots, whereas there was no detectable fluorescence in control hairy roots. The enzyme assay showed that the APase activity increased by 2-fold in transgenic hairy roots. The transformed hairy roots displayed an increase in plant soluble P and total P contents, as compared with the control plants, leading to improved biomass production. RT-PCR analysis revealed high expression levels of AtPAP18 in transformed hairy roots. It is noteworthy that these primers amplified no PAP18 transcript in control hairy roots. Taken together, the findings demonstrated that overexpression of the AtPAP18 gene offers an operative tactic to reduce the utilization of inorganic phosphorus (Pi) fertilizer through increased acquisition of soil Pi, especially improving the crop yield on soils low in available P.
机译:低磷应力是限制植物开发的挑战因素。大豆在土壤中栽培,磷在磷中经常低。然而,平均占总P的65%是有机磷酸的形式,除非水解以释放无机磷酸盐,否则对植物不可用。一种增强来自有机P源的作物P获取的一种方法促进了酸性磷酸酶(静止)的活性。本研究旨在了解拟南芥(Arabidopsis Thaliana)紫色Apase基因(ATPAP18)在大豆中的作用。因此,分离基因,构建了最终载体(ATPAP18 / PK7GWG2D)。采用农杆菌术语介导的转化产生复合大豆植物。 A.用EGFP携带ATPAP18 / PK7GWG2D载体作为报告基因的Rhizogenes K599用于大豆毛状根转化。 EGFP表达检测转基因根中荧光信号的分析,而对照毛状根中没有可检测的荧光。酶测定表明,在转基因毛状根中,秋季活性增加了2倍。与对照植物相比,转化的毛状根显示出植物可溶性P和总P含量的增加,导致改善生物质生产。 RT-PCR分析揭示了转化的毛状根中ATPAP18的高表达水平。值得注意的是,这些引物扩增了对照毛状根中的PAP18转录物。结果表明,ATPAP18基因的过度表达提供了一种手术策略,可通过增加土壤PI采集来减少无机磷(PI)肥料的利用,特别是在可用P中提高土壤的作物产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号