...
首页> 外文期刊>Oil & gas science and technology >LES of Internal Combustion Engine Flows Using Cartesian Overset Grids
【24h】

LES of Internal Combustion Engine Flows Using Cartesian Overset Grids

机译:内燃机的内燃机使用笛卡尔推广网格流动

获取原文

摘要

Accurate computations of turbulent flows using the Large-Eddy Simulation (LES) technique with an appropriate SubFilter Scale (SFS) model require low artificial dissipation such that the physical energy cascade process is not perturbed by numerical artifacts. To realize this in practical simulations, energy-conserving numerical schemes and high-quality computational grids are needed. If unstructured meshes are used, the latter requirement often makes grid generation for complex geometries very difficult. Structured Cartesian grids offer the advantage that uncertainties in mesh quality are reduced to choosing appropriate resolution. However, two intrinsic challenges of the structured approach are local mesh refinement and representation of complex geometries. In this work, the effectiveness of numerical methods which can be expected to reduce both drawbacks is assessed in engine flows, using a multi-physics inhouse code. The overset grid approach is utilized to arbitrarily combine grid patches of different spacing to a flow domain of complex shape during mesh generation. Walls are handled by an Immersed Boundary (IB) method, which is combined with a wall function to treat underresolved boundary layers. A statistically stationary Spark Ignition (SI) engine port flow is simulated at Reynolds numbers typical for engine operation. Good agreement of computed and measured integral flow quantities like overall pressure loss and tumble number is found. A comparison of simulated velocity fields to Particle Image Velocimetry (PIV) measurement data concludes the validation of the enhanced numerical framework for both mean velocity and turbulent fluctuations. The performance of two SFS models, the dynamic Smagorinsky model with Lagrangian averaging along pathlines and the coherent structure model, is tested on different grids. Sensitivity of pressure loss and tumble ratio to the wall treatment and mesh refinement is presented. It is shown that increased wall friction introduced by applying a wall model is overcompensated by some secondary effects, which lead to an overall reduction of pressure loss in the investigated engine geometry. Finally, dynamics of the statistically stationary valve jets are analyzed using Proper Orthogonal Decomposition (POD). Two distinct flow patterns are identified and the relevance for Cycle-to-Cycle Variations (CCV) is discussed.
机译:使用具有适当的子滤平尺度(SFS)模型的大涡模拟(LES)技术的大涡流模拟(SFS)模型的湍流计算需要低人工耗散,使得物理能量级联过程不受数值伪影的扰动。为了在实际模拟中实现这一点,需要节能数值方案和高质量的计算网格。如果使用了非结构化网格,则后一项要求通常会使复杂几何形状的网格生成非常困难。结构化的笛卡尔电网提供了以下优点,即网格质量的不确定性减少以选择适当的分辨率。然而,结构化方法的两个内在挑战是局部网格细化和复杂几何形状的表示。在这项工作中,在发动机流量中,在发动机流中,可以使用多物理INOUPLE代码在发动机流中评估数值方法的有效性。普雷栅格方法用于任意将不同间隔的网格贴片与网格产生期间复杂形状的流动域组合在一起。墙壁由浸没的边界(IB)方法处理,该方法与壁函数组合以处理欠溶的边界层。在发动机操作的典型雷诺数,模拟统计静止的火花点火(Si)发动机端口流。找到了良好的计算和测量的整体流量,如整体压力损失和翻滚数量。模拟速度场对粒子图像速度(PIV)测量数据的比较得出结论了增强数值框架的验证,用于平均速度和湍流波动。两个SFS模型的性能,具有沿着路线规划的拉格朗日平均的动态Smagorinsky模型和相干结构模型,在不同的网格上进行了测试。提出了压力损失和滚石比与壁处理和网眼细化的敏感性。结果表明,通过施加壁模型引入的增加的壁摩擦通过一些二次效应来实现,这导致研究的发动机几何形状中的压力损失的总体降低。最后,使用适当的正交分解(POD)分析统计上固定阀喷射的动态。鉴定了两个不同的流动模式,并讨论了对周期到循环变化(CCV)的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号