首页> 外文期刊>Physical Review D >Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors
【24h】

Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors

机译:改进的纺丝有效一体模型,为具有先进探测器的重力波天体物理学时代的非继力二进制黑洞

获取原文
获取原文并翻译 | 示例
           

摘要

We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration toward larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness-at design Advanced-LIGO sensitivity-above 99% against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling for these binary configurations. We find that future NR simulations at mass ratios approx>4 and double spin approx>0.8 will be crucial to resolving discrepancies between different ways of extrapolating waveform models. We also find that some of the NR simulations that already exist in such region of parameter space are too short to constrain the low-frequency portion of the models. Finally, we build a reduced-order version of the EOBNR model to speed up waveform generation by orders of magnitude, thus enabling intensive data-analysis applications during the upcoming observation runs of Advanced LIGO.
机译:我们通过校准它们通过将它们校准到一组141数值相对性(NR)波形,提高了在第一次观察到的纺纱术中采用的有效单体(EOB)波形的准确性。与先前的Eobnr模型相比,NR仿真扩展了朝向更大的质量比和旋转的域。用于克尔锁定理论中的Merger-Ringdown波形,用于锁定靠近极值为校准提供额外的输入。对于Inspiral-Plunge阶段,我们使用Markov-Chain Monte Carlo算法有效地探索校准空间。对于兼并旋转阶段,我们将NR信号与现象学公式拟合。在将校准模型外推到任意质量比和旋转之后,(主导模式)Eobnr波形具有忠诚于设计先进的LIGO灵敏度 - 以上的所有NR波形,包括16个用于验证的其他波形,最大化只有在初始阶段和时间。这意味着由于这些二进制配置的建模而导致的事件率损失。我们发现,在大规模差分中的未来NR模拟约> 4和双自旋大约> 0.8对解决外推波形模型的不同方式之间的差异至关重要。我们还发现,在参数空间区域中已经存在的一些NR模拟太短,无法限制模型的低频部分。最后,我们构建了一系列eobnr模型的阶数,以加快幅度的秩序产生波形生成,从而在即将到来的高级利戈的观察过程中启用密集的数据分析应用。

著录项

  • 来源
    《Physical Review D》 |2017年第4期|044028.1-044028.29|共29页
  • 作者单位

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany;

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany;

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany;

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany Department of Physics University of Maryland College Park Maryland 20742 USA;

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany;

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany;

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany;

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany;

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany;

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany;

    Department of Physics Princeton University Jadwin Hall Princeton New Jersey 08544 USA Canadian Institute for Theoretical Astrophysics University of Toronto Toronto M5S 3H8 Canada;

    Canadian Institute for Theoretical Astrophysics University of Toronto Toronto M5S 3H8 Canada Department of Physics University of Toronto Toronto M5S 3H8 Canada;

    Canadian Institute for Theoretical Astrophysics University of Toronto Toronto M5S 3H8 Canada;

    Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1 Potsdam 14476 Germany Canadian Institute for Theoretical Astrophysics University of Toronto Toronto M5S 3H8 Canada Canadian Institute for Advanced Research Toronto M5G 1Z8 Canada;

    Cornell Center for Astrophysics and Planetary Science Cornell University Ithaca New York 14853 USA;

    Theoretical Astrophysics 350-17 California Institute of Technology Pasadena California 91125 USA;

    Cornell Center for Astrophysics and Planetary Science Cornell University Ithaca New York 14853 USA;

    Gravitational Wave Physics and Astronomy Center California State University Fullerton Fullerton California 92834 USA;

    Theoretical Astrophysics 350-17 California Institute of Technology Pasadena California 91125 USA;

    Theoretical Astrophysics 350-17 California Institute of Technology Pasadena California 91125 USA Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena California 91109 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号