...
首页> 外文期刊>Solar RRL >Multilayer Cascade Charge Transport Layer for High- Performance Inverted Mesoscopic All-Inorganic and Hybrid Wide-Bandgap Perovskite Solar Cells
【24h】

Multilayer Cascade Charge Transport Layer for High- Performance Inverted Mesoscopic All-Inorganic and Hybrid Wide-Bandgap Perovskite Solar Cells

机译:多层级联电荷传输层,用于高性能倒置介质全无机和混合宽带胶凝钙钛矿太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

It is imperative to improve the quality of light absorber and reduce the charge-carrier recombination for efficient perovskite solar cells (PSCs). Herein, a synergistic regulation strategy that combines the tailoring of crystallinity and construction of multilayer cascade charge transport layers (CTLs) for inverted CsPbI_2Br solar cells is presented. The film quality of CsPbI_2Br is well tuned via F~- doping. In addition, gradient energy alignment between perovskite and CTLs, i.e., NiO_x/Zn:CuGaO_2/perovskite and perovskite/TiO_2/PC_(61)BM/ZnO, favors the charge transfer and depresses carrier recombination. Noticeably, the TiO_2 interlayer with deep valence band maximum effectively blocks the hole backtransfer from perovskite to PC_(61)BM. These unique characteristics of the novel structured CsPbI_2Br device give a champion power conversion efficiency (PCE) of 15.10% along with good thermal and operational stability. Moreover, the graded CTLs can be expanded to methylammonium-free hybrid perovskite device (Eg=≈1.76 eV) by delivering a PCE of 18.12%, showing great promise in tandem solar cells for use as top cell.
机译:必须提高光吸收剂的质量,并降低有效钙钛矿太阳能电池(PSC)的电荷载体重组。这里,提出了一种协同调节策略,其结合了结晶度和构造的倒CSPBI_2BR太阳能电池的结晶度和构造的结晶度和构造。 CSPBI_2BR的胶片质量通过F〜掺杂调整良好。此外,钙钛矿和CTL之间的梯度能量对准,即NiO_X / Zn:CugaO_2 / Perovskite和Perovskite / TiO_2 / PC_(61)BM / ZnO,最接受电荷转移并按下载体重组。明显地,具有深度价带最大值的TiO_2中间层有效地阻挡了从PEROVSKITE到PC_(61)BM的孔Backtransfer。这些新颖的CSPBI_2BR器件的这些独特的特性使冠军电力转换效率(PCE)为15.10%,具有良好的热和操作稳定性。此外,通过递送18.12%的PCE,可以将梯度CTL扩展到甲基铵的杂交钙钛矿装置(例如=≈1.76eV)中,显示出在串联太阳能电池中使用作为顶部细胞的良好许可。

著录项

  • 来源
    《Solar RRL》 |2020年第10期|2000344.1-2000344.10|共10页
  • 作者单位

    Department of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China Sichuan Research Center of New Materials Institute of Chemical Materials China Academy of Engineering Physics 596 Yinhe Road Shuangliu Chengdu 610200 China;

    Sichuan Research Center of New Materials Institute of Chemical Materials China Academy of Engineering Physics 596 Yinhe Road Shuangliu Chengdu 610200 China;

    Sichuan Research Center of New Materials Institute of Chemical Materials China Academy of Engineering Physics 596 Yinhe Road Shuangliu Chengdu 610200 China;

    Sichuan Research Center of New Materials Institute of Chemical Materials China Academy of Engineering Physics 596 Yinhe Road Shuangliu Chengdu 610200 China;

    Sichuan Research Center of New Materials Institute of Chemical Materials China Academy of Engineering Physics 596 Yinhe Road Shuangliu Chengdu 610200 China;

    Institute of Chemistry for Functionalized Materials College of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China;

    Department of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China;

    Sichuan Research Center of New Materials Institute of Chemical Materials China Academy of Engineering Physics 596 Yinhe Road Shuangliu Chengdu 610200 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    charge-carrier transfer; charge transport layers; crystallization tailoring; energy alignment; perovskite solar cells;

    机译:充电载波转移;电荷运输层;结晶剪裁;能量对准;Perovskite太阳能电池;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号