...
首页> 外文期刊>Scientific reports. >Evaluating maize and soybean grain dry-down in the field with predictive algorithms and genotype-by-environment analysis
【24h】

Evaluating maize and soybean grain dry-down in the field with predictive algorithms and genotype-by-environment analysis

机译:利用预测算法和按环境分基因型分析评估田间玉米和大豆籽粒的枯竭

获取原文
   

获取外文期刊封面封底 >>

       

摘要

A delayed harvest of maize and soybean crops is associated with yield or revenue losses, whereas a premature harvest requires additional costs for artificial grain drying. Accurately predicting the ideal harvest date can increase profitability of US Midwest farms, but today's predictive capacity is low. To fill this gap, we collected and analyzed time-series grain moisture datasets from field experiments in Iowa, Minnesota and North Dakota, US with various maize (n?=?102) and soybean (n?=?36) genotype-by-environment treatments. Our goal was to examine factors driving the post-maturity grain drying process, and develop scalable algorithms for decision-making. The algorithms evaluated are driven by changes in the grain equilibrium moisture content (function of air relative humidity and temperature) and require three input parameters: moisture content at physiological maturity, a drying coefficient and a power constant. Across independent genotypes and environments, the calibrated algorithms accurately predicted grain dry-down of maize (rsup2/sup?=?0.79; root mean square error, RMSE?=?1.8% grain moisture) and soybean field crops (rsup2/sup?=?0.72; RMSE?=?6.7% grain moisture). Evaluation of variance components and treatment effects revealed that genotypes, weather-years, and planting dates had little influence on the post-maturity drying coefficient, but significantly influenced grain moisture content at physiological maturity. Therefore, accurate implementation of the algorithms across environments would require estimating the initial grain moisture content, via modeling approaches or in-field measurements. Our work contributes new insights to understand the post-maturity grain dry-down and provides a robust and scalable predictive algorithm to forecast grain dry-down and ideal harvest dates across environments in the US Corn Belt.
机译:玉米和大豆作物的延迟收获与产量或收入损失有关,而过早收获则需要人工谷物干燥的额外费用。准确预测理想的收获日期可以提高美国中西部农场的盈利能力,但是今天的预测能力很低。为了填补这一空白,我们收集并分析了美国爱荷华州,明尼苏达州和北达科他州的田间试验的时间序列谷物水分数据集,并按基因型对不同玉米(n = 102)和大豆(n = 36)进行了分析。环境处理。我们的目标是研究驱动成熟后谷物干燥过程的因素,并开发可扩展的决策算法。所评估的算法受谷物平衡水分含量(空气相对湿度和温度的函数)变化的驱动,并且需要三个输入参数:生理成熟时的水分含量,干燥系数和功率常数。在不同的基因型和环境中,经过校准的算法可以准确预测玉米(r 2 ?=?0.79;均方根误差,RMSE?=?1.8%谷物水分)的玉米干dry和大豆田间作物(r 2 ≥0.72;RMSE≥6.7%谷物水分)。对方差成分和处理效果的评估表明,基因型,天气年份和播种日期对成熟后的干燥系数影响很小,但在生理成熟时显着影响谷物的水分含量。因此,在整个环境中准确实施算法将需要通过建模方法或现场测量来估算初始谷物水分含量。我们的工作为了解成熟后的谷物干燥提供了新的见解,并提供了强大而可扩展的预测算法来预测美国玉米带环境中的谷物干燥和理想的收获日期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号