...
首页> 外文期刊>Bulletin of the American Physical Society >APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - Unsteady flow challenges tracking performance at vortex shedding frequencies without disrupting lift mechanisms
【24h】

APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - Unsteady flow challenges tracking performance at vortex shedding frequencies without disrupting lift mechanisms

机译:APS-APS流体动力学分部第70届年会-事件-不稳定流动挑战在涡旋脱落频率下跟踪性能而不会破坏升力机制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, extit{Manduca sexta, }tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.
机译:鸟类,昆虫和许多动物使用不稳定的空气动力学机制来实现稳定的悬停飞行。自然环境的特征通常是不稳定的流动,导致动物在执行复杂的任务(例如觅食)时动态响应扰动。关于动物周围的不稳定流动与环​​境中已经不稳定的流动如何相互作用或如何影响性能的了解甚少。我们研究了环境如何影响可操纵性,以揭示鹰蛾的身体动力学和空气动力学之间的任何耦合,并在风洞中追踪3D打印的机器人花朵。我们还观察到前沿涡流(LEV),这是一种具有烟雾可视化的昆虫飞行已知的升力产生机制。静止和不稳定的空气中的飞蛾在低频下表现出近乎完美的跟踪,但是花后的跟踪会导致中距离处的较大过冲。花尾流的烟雾可视化显示,主要涡旋脱落与增加的过冲对应于相同的频带。尽管对飞行动力学影响很大,但LEV仍然在整个机翼行程中都束缚在机翼和胸部。通常,不稳定的风似乎会降低机动性,但LEV的稳定性似乎与飞行动力学的变化脱钩。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号