...
首页> 外文期刊>Bulletin of the American Physical Society >APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - Ultrahigh throughput microfluidic platform for in-air production of microscale droplets
【24h】

APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - Ultrahigh throughput microfluidic platform for in-air production of microscale droplets

机译:APS-流体动力学APS部门第70届年会-活动-空中生产微滴的超高通量微流体平台

获取原文
           

摘要

In-air droplet formation inside microfluidic networks is an alternative technique to the conventional in-liquid systems for creating uniform, microscale droplets. Recent works have highlighted and quantified the use of a gaseous continuous phase for controlled generation of droplets in the Dripping regime in planar structures. Here we demonstrate a new class of non-planar droplet-based systems which rely on controlled breakup of a liquid microjet within a high speed flow of air inside a confined microfluidic flow-focusing PDMS channel. We investigate the physics of confined gas-liquid flows and the effect of geometry on the behavior of a liquid water jet in a gaseous flow. Droplet breakup in the Jetting regime is studied both numerically and experimentally and the results are compared. We show droplet production capability at rates higher than 100 KHz with droplets ranging from 15-30$mu $m in diameter and a polydispersity index of less than 15{%}. This work represents an important investigation into the Jetting regime in confined microchannels. The ability to control jet behavior, generation rate, and droplet size in gas-liquid microflows will further expand the potential applications of this system for high throughput operations in material synthesis and biochemical analysis.
机译:在微流体网络内部形成空气中的液滴是用于形成均匀的微尺度液滴的常规液体系统的一种替代技术。最近的工作已经突出并量化了在平面结构的滴入状态下使用气态连续相来控制液滴的产生。在这里,我们展示了一种新型的基于非平面液滴的系统,该系统依赖于在有限的微流体流动聚焦PDMS通道内的高速空气流中的液体微喷的受控破裂。我们研究了受限气液流的物理性质以及几何形状对气态水射流行为的影响。数值和实验研究了喷射模式下的液滴破裂,并比较了结果。我们显示了以高于100 KHz的速率产生液滴的能力,液滴的直径范围为15-30μm,多分散指数小于15%。这项工作是对密闭微通道中喷射机制的重要研究。控制气液微流中射流行为,产生速率和液滴尺寸的能力将进一步扩展该系统在材料合成和生化分析中用于高通量操作的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号