...
首页> 外文期刊>Bulletin of the American Physical Society >APS -20th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter - Event - On a calibration of a reaction rate model for explosive by a DSD-informed method
【24h】

APS -20th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter - Event - On a calibration of a reaction rate model for explosive by a DSD-informed method

机译:APS凝聚态物质冲击压缩专题组第20届两年一次会议-事件-通过DSD知悉方法校准炸药的反应速率模型

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The theory of detonation shock dynamics (DSD) applies to a model of an explosive with a specified reactant equation of state (EOS), products EOS, and a reaction rate law for reaction progress variable for the change from reactants to products. Given the assumed forms for the EOS, closure for the components and reaction rate law, a ``DSD-informed" calibration uses experimental shock Hugnoiot data, plane shock initiation data, and shock curvature data and or diameter effect data. It has been found that DSD-informed reactive flow models are predictive of experimentally observed shock dynamics over a wide-range of conditions, once determined [1,2]. This paper discusses how to calibrate the EOS and reaction rate of Ignition {&} Growth (I{&}G) coupled with the reactive flow model. Previous methods of calibration generated a detonation shock speed, curvature relation (D-kappa) from theory and compared with an experimentally determined D-kappa relation. Our new procedure generates a shock shape across a rate stick from theory and compares it with shock shapes obtained from experiments. The procedure is carried out based on the sensitivity of completion term in the I{&}G model to D-kappa relation and of the reactant equation of state to the local shock shape at wall in a cylindrical explosive.References:1. David E. Lambert, D. Scott Stewart, Sunhee Yoo and Bradley L. Wescott, J. Fluid Mech., 546, 227-253, (2006).2. B. L. Wescott, D. Scott Stewart and W. C. Davis, J. Appl. Phys. 98, 053514 (2005).
机译:爆震冲击动力学(DSD)理论适用于具有指定反应物状态方程(EOS),产物EOS以及具有从反应物到产物变化的反应进度变量的反应速率定律的炸药模型。给定EOS的假定形式,部件的闭合度和反应速率法则,“ DSD信息化”校准使用实验性冲击Hugnoiot数据,平面冲击起始数据以及冲击曲率数据和/或直径效应数据。一旦确定[DS],DSD通知的反应流模型就可以预测大范围条件下实验观察到的冲击动力学[1,2]。本文讨论了如何校准EOS和点火{&}生长反应速率(I { &} G)与反应流模型耦合。以前的校准方法从理论上产生了爆震冲击速度,曲率关系(D-kappa),并与实验确定的D-kappa关系进行了比较。根据理论上的速率棒并将其与实验获得的冲击形状进行比较,该程序是基于I {&} G模型中完成项对D-kappa关系和状态反应物方程的敏感性而进行的圆柱炸药的壁上的局部冲击形状。参考文献:1。 David E.Lambert,D.Scott Stewart,Sunhee Yoo和Bradley L.Wescott,J。流体力学,546,227-253,(2006).2。 B.L.Wescott,D.Scott Stewart和W.C.Davis,J.Appl。物理98、053514(2005)。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号