...
首页> 外文期刊>Bulletin of the American Physical Society >APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - Drag control of wall-bounded turbulent flows.
【24h】

APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - Drag control of wall-bounded turbulent flows.

机译:APS-APS流体动力学分部第70届年会-事件-约束有边界湍流的阻力控制。

获取原文
           

摘要

Using direct numerical simulations of turbulent channel flow, we present a new method for skin friction reduction, enabling large-scale flow forcing without requiring instantaneous flow information. We show that the lack of drag reduction at high Re (Re$_{mathrm{au }}$egin{figure}[htbp]centerline{includegraphics[width=0.25in,height=0.20in]{300720171.eps}}label{fig1}end{figure}$=quad 550)$ recently reported by Canton extit{et al. }[J. Canton extit{et al.}, PRF (2016)] is remedied by a proper choice of the large-scale control flow, i.e. via near-wall spanwise opposed wall-jet forcing (SOWF), each wall-jet covering multiple streaks. The control method is characterized by three parameters, namely, the wall-jet amplitude A$^{mathrm{+}}$, the spanwise wall-jet spacing $Lambda^{mathrm{+}}$, and the wall-jet height y$^{mathrm{+}}_{mathrm{c}}$ ($+$ indicates viscous scaling). We show as an example that with a choice of A$^{mathrm{+}}approx $.015, $Lambda ^{mathrm{+}}approx $1200 and y$^{mathrm{+}}_{mathrm{c}} quad =$30 (these three parameters values were found to produce maximum drag reduction for Re$_{mathrm{au hinspace }}=$ 180), the flow control definitely suppresses the wall shear stress at a series of Reynolds numbers, namely, 19{%}, 14{%}, and 12{%} drag reductions at Re$_{mathrm{au }}=$ 180, 395, and 550, respectively. Vortex structures ($lambda_{mathrm{2}})$ and flow statistics (Reynolds shear stress, rms of vorticities, kinetic energy budget, etc.) are further examined to explain the mechanism of drag reduction and increase.
机译:使用湍流通道流动的直接数值模拟,我们提出了一种减少蒙皮摩擦的新方法,可在不需要瞬时流动信息的情况下进行大规模的流动强迫。我们显示,在高Re(Re $ _ {mathrm {au}} $ egin {figure} [htbp] centerline {includegraphics [width = 0.25in,height = 0.20in] {300720171.eps}}标签上,阻力减小的缺乏{exig1} end {figure} $ = quad 550)$最近由Canton extit报告[et al。 } [J。广extit {等},PRF(2016)]由大规模控制流程,即,经由近壁翼展方向相对的壁射流强迫(SOWF),每个壁射流覆盖多个条纹的适当选择补救。该控制方法的特征在于三个参数,即壁面喷射幅度A $ ^ {mathrm {+}} $,翼展方向壁面喷射间距$ Lambda ^ {mathrm {+}} $和壁面喷射高度y $ ^ {mathrm {+}} _ {mathrm {c}} $($ + $表示粘性缩放)。我们举例说明,选择A $ ^ {mathrm {+}}约为$ .015,$ Lambda ^ {mathrm {+}}约$ 1200,而y $ ^ {mathrm {+}} _ {mathrm {c }} quad = $ 30(发现这三个参数值可以使Re $ _ {mathrm {au hinspace}} = $ 180产生最大的阻力减小),流量控制无疑会抑制一系列雷诺数的壁面剪应力,即,阻力减少19 {%},14 {%}和12 {%},分别为Re $ _ {mathrm {au}} = $ 180、395和550。进一步检查了涡结构(lambda_ {mathrm {2}})$和流量统计数据(雷诺剪切应力,涡旋均方根,动能收支等),以解释减阻和增加的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号